
WARDen: Specializing Cache Coherence for
High-Level Parallel Languages

Michael Wilkins
Northwestern University, USA

Sam Westrick
Carnegie Mellon University, USA

Vijay Kandiah
Northwestern University, USA

Alex Bernat
Northwestern University, USA

Brian Suchy∗
Northwestern University, USA

Enrico Armenio Deiana
Northwestern University, USA

Simone Campanoni
Northwestern University, USA

Umut A. Acar
Carnegie Mellon University, USA

Peter Dinda
Northwestern University, USA

Nikos Hardavellas
Northwestern University, USA

Abstract
High-level parallel languages (HLPLs) make it easier to write
correct parallel programs. Disciplinedmemory usage in these
languages enables new optimizations for hardware bottle-
necks, such as cache coherence. In this work, we show how
to reduce the costs of cache coherence by integrating the
hardware coherence protocol directly with the programming
language; no programmer effort or static analysis is required.
We identify a new low-level memory property, WARD

(WAW Apathy and RAW Dependence-freedom), by construc-
tion in HLPL programs. We design a new coherence protocol,
WARDen, to selectively disable coherence using WARD.

We evaluate WARDen with a widely-used HLPL bench-
mark suite on both current and future x64machine structures.
WARDen both accelerates the benchmarks (by an average of
1.46x) and reduces energy (by 23%) by eliminating unneces-
sary data movement and coherency messages.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; •Computingmethodologies→ Par-
allel programming languages.

Keywords: cache coherence, disentanglement
ACM Reference Format:
Michael Wilkins, Sam Westrick, Vijay Kandiah, Alex Bernat, Brian

∗Now at Google

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0101-6/23/02. . . $15.00
https://doi.org/10.1145/3579990.3580013

Suchy, Enrico Armenio Deiana, Simone Campanoni, Umut A. Acar,
Peter Dinda, and Nikos Hardavellas. 2023. WARDen: Specializing
Cache Coherence for High-Level Parallel Languages. In Proceedings
of the 21st ACM/IEEE International Symposium on Code Generation
and Optimization (CGO ’23), February 25 – March 1, 2023, Montréal,
QC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3579990.3580013

1 Introduction
High-level parallel languages (HLPLs) are an increasingly
popular approach to programming shared-memory multipro-
cessors. HLPLs are memory-managed languages that make
parallel programming simpler and safer. We focus on HLPLs
that implement the fork-join programming idiom popular-
ized in lower-level contexts such as OpenMP [65]. Example
HLPLs include various dialects of Parallel ML [2, 34, 81, 90].

HLPLs are growing in popularity across academia, indus-
try, and education. Academia and industry are actively de-
veloping and improving these languages [2, 79, 80, 90]. Also,
HLPLs are part of the curricula of top undergraduate pro-
grams. For example, Carnegie Mellon University uses HLPLs
to teach the fundamentals of data structures and parallel
algorithms. Given HLPLs’ expanding usage, there is an exi-
gency to accelerate these programs. In this paper, we present
a novel hardware-software co-design that leverages a unique
property of HLPLs to improve the memory subsystem.

A major bottleneck in the memory system of multiproces-
sors is cache coherence. Hardware cache coherence protocols
manage data within the private and shared caches to imple-
ment the shared memory abstraction. Coherence is known
to amount to ≈ 50% of on-chip interconnect traffic [14, 26, 29,
76]. Future systems, which are projected to burgeon through
higher core counts, multi-socket systems [3, 13, 27, 42, 44,
46, 49, 62, 83] or disaggregation [15, 30, 45, 52, 55, 58, 60, 68]
will further increase the cost of coherence.

Previous works improved the coherence protocol’s perfor-
mance for select non-HLPL programs [12, 21, 74, 75]. These
approaches targeted programs with the data-race freedom

95

https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/3579990.3580013
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

Data-race Free
Programs
Races for

Synchronization
(Locks)

Disentangled
Programs

Benign data races
(WAW, atomics)

Unmodified
HLPL

Program

Binary w/ Modified
Language Runtime (<100

lines of changed code)

Compile (No Extra Static Analysis)

Execute on CPU w/
WARDen

Legacy Apps

Unaffected
Performance

Performance
Improvement

Hardware Scale

Figure 1. WARDen accelerates a broad set of applications without
user annotation or static analysis while maintaining performance
for legacy applications. Acceleration increases with hardware scale.

(DRF) property [1]. DRF is program-specific, so developers
must ensure that their program maintains the property and
then correctly announce it via manual annotation. Manual
annotation is a substantial burden in any case, and in HLPLs,
it would defeat the purpose of ”high-level” abstractions that
insulate developers from their program’s memory behavior.
Instead, we target an HLPL property called disentangle-

ment (§2.1) [90]. Disentanglement is broader than DRF be-
cause it allows for “benign” races, such as select write-after-
write (WAW) dependencies. Intuitively, WAWs may be be-
nign because the algorithm does not care which value per-
sists, or that the written values are the same. Disentangle-
ment is particularly advantageous because it can be embed-
ded in the implementation of an HLPL without user annota-
tion or static analysis. Therefore, HLPL programs can benefit
from our improvements with zero programmer effort.
We observe that the disentanglement property enables

new architectural optimizations. To take advantage, we in-
troduce a low-level memory property, “WARD”, and unify it
with disentanglement.We first define theWARD (Write-after-
write Apathy and Read-after-write Dependence-freedom)
property, as well as a WARD region, the set of addresses and
a period of time over which the WARD property holds (§3).
Intuitively, all concurrent updates in a WARD region can be
simply reconciled in an unordered manner when the region
ends. As a consequence, hardware coherence can be disabled
for WARD regions. Also, WARD regions can be identified
automatically by the HLPL runtime with zero compile-time
or run-time overhead and no programmer involvement (§4).

To utilize WARD regions, we introduce theWARDen pro-
tocol, a small extension of directory-based cache coherence
protocols. WARDen (§5) augments the commonplace MESI
protocol [63] with a WARD state, which indicates that coher-
ence should effectively be disabled. The WARDen protocol
protects accesses within WARD regions from coherence-
driven interruptions (i.e., invalidation and downgrade re-
quests). Our approach maintains the entire functionality of
MESI, ensuring that legacy applications run unencumbered.

We implement WARDen within a validated Sniper [16, 17]

simulation and extend a Parallel ML language implementa-
tion, MPL [61, 90], to signal WARD regions to the hardware.

We evaluate the integrated WARDen system using a vari-
ety of benchmarks that encompass the common use-cases
of HLPLs [78]. WARDen is able to obtain significant perfor-
mance and energy improvements. We explore the benefits
and costs on a wider space of hardware than is currently
available, including disaggregated systems. Figure 1 visual-
izes the overarching story of our work.

We summarize our contributions as follows.
• We define WARD, a property for parallel programs that
precludes the need for cache coherence (§3).

• We introduce techniques for identifying WARD
automatically in high-level parallel programs and
implement them in the MPL runtime (§4).

• We propose WARDen, a cache coherence protocol that
allows applications to disable coherence in accordance
with the WARD property (§5).

• We develop a simulation-based prototype of WARDen (§6).
We find it achieves a 1.46x average speedup while
reducing energy usage by 23%. We consider how the
benefits of WARDen grow with future hardware (§7).

2 Background
Our work juxtaposes concepts from modern programming
languages and computer architecture.

2.1 Disentanglement

Fork-Join: The HLPLs we focus on implement nested fork-
join parallelism, which relieves the programmer from manu-
ally managing parallelism. They instead use high-level con-
structs such as parallel-for loops. This approach relies on a
thread scheduler (e.g., work-stealing) to create and sched-
ule parallel threads. It allows for fine-grained parallelism by
forking and joining many light-weight dynamic threads.

Spawn Trees:During execution, a fork-join program con-
sists of a dynamic tree of light-weight threads called the
spawn tree. Initially, there is a single root thread. At any
moment, any leaf (i.e., a thread with no children) may fork,
which suspends the thread and spawns two or more new
child threads to run in parallel. When all children of a thread
have completed execution, they may join, which removes
the completed children from the tree and resumes the par-
ent as a leaf. In this way, all internal (non-leaf) threads are
suspended, and all computation is performed by leaf threads.
Two threads are concurrent if neither is an ancestor of the
other. That is, concurrent threads are siblings, cousins, etc.

Disentanglement: To avoid race conditions, fork-join
parallel programs usememory in a disciplinedmanner. There
are a number of approaches to this end, including race-
detection [7, 19, 31, 33, 35, 59, 71, 72, 88], type and effect sys-
tems [12, 48], programming techniques for determinism [9,
53, 54], as well as determinism-by-default with purely func-
tional programming [2, 4, 8, 10, 34, 37–39, 56, 69, 70, 82, 90].

96

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

merge heaps
into parent

fresh empty heaps

fork join

Figure 2.Heap hierarchy at forks and joins [2]. Black circles are ac-
tive leaf threads, and white circles are suspended (internal) threads.
Gray rectangles are heaps.

Recent work identifies one discipline called disentangle-
ment, which (informally) means that concurrent threads are
oblivious to each other’s allocations [2, 37, 70, 89, 90]. Dis-
entanglement allows communication between concurrent
threads only through memory allocated by common ances-
tors.

MPL and the Heap Hierarchy: Disentanglement can
be exploited for improved efficiency and scalability, espe-
cially for automatic memory management and parallel GC,
as demonstrated by the MPL (“maple”) compiler [2, 61, 90]
for Parallel ML. To automate memory management, MPL or-
ganizes memory into a dynamic tree of heaps called the heap
hierarchy, which mirrors the spawn tree. Maintenance of the
heap hierarchy is illustrated in Figure 2. When a thread is
spawned, it receives its own fresh heap in which it allocates
all data. When a thread completes, its data is returned to the
parent by merging its heap into the parent’s.

Disentanglement Definition: With the heap hierarchy,
we define disentanglement as the property that threads only
“use” data in their root-to-leaf path of heaps. We say that
a thread uses some data if the thread is holding a pointer
to that data. By maintaining the heap hierarchy, the lan-
guage runtime automatically ensures that the disentangle-
ment property holds for the generated code [89, 90].

Definition 1 (Disentanglement). A fork-join parallel pro-
gram is disentangled if each thread only holds pointers (in
its stack or registers) to data in either its own heap or the
heap of an ancestor.

Usefulness of Disentangled Programs: We now com-
pare disentanglement with the classic property of data race
freedom (DRF). Previous work leveraged DRF to improve co-
herence [12, 21, 74, 75]. Here, we show why disentanglement
is a more general/useful property for developers.

Disentanglement is more general than data race-freedom
because it allows “benign” data races. We describe two ex-
amples of disentangled programs that leverage data races.
Our first example is in a prime sieve (described in more

detail in §3.3), where multiple threads race to mark numbers
as composite; this constitutes a write-write race, but this race
is “benign” because all threads are writing the same value.

Next, we consider a parallel breadth-first search of a graph
where the search uses inexact criteria (i.e., more than one
vertex may meet the search criteria). The threads race to

write an acceptable vertex to a shared memory location al-
located by the ancestor who initiated the search. It does
not matter which thread “wins” the race because they are
all writing back values which meet the search criteria.This
example highlights that “benign” data races may include
write-after-write races with different values.

These examples contain data races, but are nevertheless
disentangled. If desired, these algorithms could be made en-
tirely data-race-free and deterministic by adding an explicit
deduplication step. Instead, disentanglement trades a small
amount of non-determinism for fewer allocations and im-
proved performance.

2.2 Cache Coherence

Data Hazards: Disabling coherence exploits the absence or
irrelevance of data hazards. Data hazards exist when two
hardware threads interact with a shared memory address
and at least one thread writes the address. When this occurs,
the hardware must order the reads/writes to achieve correct-
ness with respect to the consistency model.∗ Consequently,
execution pauses, and overall progress is slowed. Of the three
varieties of data hazards (Read-After-Write (RAW), Write-
After-Read (WAR), and Write-After-Write (WAW)), WARD
reasons about RAW and WAW. Figure 3, Events 1 and 2 give
examples of RAW andWAW, respectively. TrueWAR hazards
are prevented by WARDen’s reconciliation process (§5.2).

Drawbacks of Cache Coherence: Cache coherence tra-
ditionally suffers from inefficiencies. One pitfall is false shar-
ing, which persists as a challenge despite being studied for
more than 25 years [87]. Cache coherence protocols also suf-
fer slowdowns due to true sharing. Current protocols address
all true sharing events equally and reactively. However, some
true sharing conflicts, such as benign WAW races found in
disentangled programs, do not require fine-grained coher-
ence. In addition, proactively flushing private caches can
significantly improve performance (8–28%) [32]. WARDen
improves both false sharing and true sharing scenarios to
minimize the drawbacks of cache coherence for disentangled
programs.

2.3 Cache Coherence for Disciplined Programs

We argue that HLPLs’ disciplined memory management en-
ables new advancements to overcome the bottlenecks of
cache coherence. Previous works addressed some drawbacks
of cache coherence for data-race-free programs [12, 21, 74,
75]. DRF prohibits concurrent accesses to data values (i.e.,
not synchronization primitives) if at least one access is a
write. This property is more restrictive than disentangle-
ment because it disallows benign WAW dependencies.

DRF must be enforced on an individual basis for each pro-
gram. This burden typically falls on the programmer through
manual annotation [12, 21, 75]. Requiring the programmer to

∗We assume Total Store Order (TSO) [63].

97

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

*val = 1;

*val++;

Core i Core j

SYNC

Time

EVENT 1 RAW - Not WARD

EVENT 3 WAW Apathy - WARD

*val = 1;

*val = 2;

Core i Core j

SYNC

EVENT 2 WAW - Not WARD

*val = 1; *val = 2;
Core i Core j

SYNC

Figure 3. Examples of non-WARD (Events 1, 2) and WARD regions
(Event 3). Either value is accepted in Event 3 (§3.2).

carefully annotate the memory behavior of a high-level pro-
gram defeats the purpose of a memory-managed language.
Disentanglement, on the other hand, is embedded in the

language definition. The language runtime ensures that all
programs exhibit the property without programmer involve-
ment. By targeting a broader and language-enforced prop-
erty, WARDen provides a completely transparent improve-
ment for programmers using HLPLs.

3 WARD Property
We now formally define the WARD property and provide
examples of how the definition applies to programs, both
generally and in a high-level fork-join language.

3.1 WARD Definition

We define the WARD property for a memory location M. M
displays the WARD property when two conditions hold for
all hardware threads. For any two hardware threads i and j:

1 There exist no execution orders which include RAW
dependencies between i and j at M.

2 Any possible WAW dependencies betweeen i and j at
M may be resolved in any order.

If these conditions are true for all possible combinations of i
and j, then M has the WARD property.

Because the WARD property may exist for a specific set of
memory locations and/or for a limited amount of time, we
refer to the WARD property in terms of regions. A WARD
region r is constrained in memory space and time such that:

𝑟 =
(
{M}, (𝑡𝑠 , 𝑡𝑒)

)
(1)

During the time interval from 𝑡𝑠 to 𝑡𝑒 , the set of addresses
{M} have the WARD property.

3.2 General WARD Example

WARD can be understood by observing the example in Fig-
ure 3. Note that the "sync" line in the figure refers to natural
synchronization points such as barriers and fork-join points
from the fork-join model. We see that each event includes

1 // compute all primes less−or−equal to N
2 // output: array of flags, p is prime if flags[p] is true
3 def prime_sieve_upto(𝑁):
4 bool flags[] = // size 𝑁 + 1, all initially true
5 flags[0] = false
6 if 𝑁 ≥ 1:
7 flags[1] = false
8 if 𝑁 ≥ 2:
9 bool sqrtflags[] = prime_sieve_upto(⌊

√
𝑁 ⌋)

10 parallelfor 𝑝 in range(0, ⌊
√
𝑁 ⌋):

11 if sqrtflags[𝑝]:
12 // 𝑝 is prime, mark multiples as not prime
13 parallelfor 𝑚 in range(2, ⌊𝑁 /𝑝⌋):
14 flags[𝑝*𝑚] = false
15 return flags flags is a WARD region

Figure 4. WARD example: prime sieve. Throughout execution, all
instances of flags are WARD regions.

two cores (analogous to the hardware threads in the WARD
definition), which both operate on the same variable.

In Event 1, hardware thread i writes to the shared variable
val. After synchronization, hardware thread j reads and sub-
sequently writes to val. When this situation occurs, a RAW
dependency exists at val. Therefore, the WARD property
does not exist by condition 1 of the definition.
In Event 2, i writes to val, then j writes to val. After syn-

chronization, hardware thread j writes a new value to val.
When this situation occurs, a WAW dependency exists at
val. The program requires hardware thread j’s final value to
persist via the memory fence. The WAW is not apathetic, so
the WARD property does not exist by condition 2.

In Event 3, i and j again both write to val. We observe that
are no RAW dependencies between i and j at val because val
is never read during the event. On the other hand, there is a
WAW dependency. However, the program does not provide
explicit ordering, so it is safe to resolve theWAWdependency
in either order and maintain correctness. Event 3 meets both
conditions of the WARD definition, and thus val holds the
WARD property for the duration of Event 3.

3.3 High-Level WARD Example

Figure 4 provides an example of how the WARD property ap-
plies to the high-level parallel languages we focus on in this
work. The pseudocode is for a prime sieve computation that
is a simplified version of the primes benchmark we include in
our evaluation. It defines a function prime_sieve_uptowhich
outputs an array of booleans, flags, to mark which integers
up to 𝑁 are prime. For large enough 𝑁 , the function first
computes all primes up to ⌊

√
𝑁 ⌋ via a recursive call. Then,

for each integer 𝑝 less than ⌊
√
𝑁 ⌋, if 𝑝 is prime, it marks ev-

ery multiple of 𝑝 as composite. When this process completes,
all flags will be correct up to 𝑁 .

In this example, the flags array is aWARD region. The only
races on the flags array are write-write races at indices which
are multiples of two or more primes, but the same value (the

98

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

boolean false) is always written at each location. Therefore,
the writes may be resolved in any order. Consequently, the
flags array satisfies both conditions of the WARD definition.

4 WARD by Construction
We show how WARD regions can be automatically detected
in HLPL programs without programmer annotation or com-
piler analysis. These results are relevant for MPL [2, 61, 90],
a compiler for the Parallel ML language.

Conservative Scheduling: For the purposes of connect-
ing logical parallelism (i.e., the fork-join structure) and actual
parallelism on the hardware, we assume that the scheduler
does not over-parallelize. Specifically, if two instructions oc-
cur concurrently on two hardware threads during execution,
then the instructions are logically in parallel according to
the fork-join structure of the program. All user-level thread
schedulers that we know of, including those used in lan-
guages and systems such as Cilk, OpenMP, and MPL, follow
this assumption. The standard retirement process in an out-
of-order superscaler core then assures that effects become
visible as the scheduler intends.

4.1 Disentanglement⇒ WARD

Through the lens of disentanglement and the heap hierarchy
(§2.1), we make an immediate observation: at each leaf heap,
all data is entirely local to one thread. Therefore, all leaf
heaps are WARD regions in disentangled programs. This is a
critical point because at every moment throughout execu-
tion, approximately half of all heaps are leaves, even as the
hierarchy grows and shrinks due to forks and joins. (Leaf
heaps may become internal due a fork, but then later become
a leaf again due to a join.)
In this work, we are conservative in that internal heaps

may also be or containWARD regions, but we do not leverage
them. From disentanglement alone, we cannot ensure that
the data at internal heaps is WARD. Disentanglement allows
for communication through ancestor (i.e., internal) heaps,
which may violate the WARD property.

Despite our conservative assumption, our approach still
encompasses many memory accesses, including significant
benignWAW races. Allocations occur at leaf heaps, so we can
ensure that all newly-allocated data occurs in regions that are
WARD in disentangled programs. For programs that utilize
considerable immutable data, WARD also covers all memory
writes which initialize new immutable objects. Specifically
regarding WAWs, significant races can occur from the lan-
guage runtime interacting with application memory.

4.2 Disentanglement by Construction in MPL

The MPL compiler [2, 61, 90] is a compiler for Parallel ML
that extends the Standard ML functional programming lan-
guage with (nested) fork-join parallelism. MPL directly pro-
duces x64 executables (no JIT) linked with a runtime system.
To ensure disentanglement by construction, MPL offers a

standard library consisting of a number of datatypes, in-
cluding sequences, sets, dictionaries, etc. The library code
is implemented under-the-hood via efficient data structures
and algorithms, utilizing in-place updates where crucial for
efficiency. This approach allows programmers to write effi-
cient, deterministic, parallel algorithms without needing to
reason about either race conditions or disentanglement. The
resulting programs are disentangled by construction.

Automatically Exploiting WARD with MPL: In MPL,
the runtime system performs task scheduling and automatic
memory management. It already exploits disentanglement
for improved parallel memory management (especially par-
allel GC). It does so by explicitly partitioning memory into a
dynamic heap hierarchy at runtime.

Again, during execution, all leaf heaps are WARD regions.
To take advantage of these WARD regions afforded by disen-
tanglement, we modified two parts of MPL’s runtime system:
the memory manager and scheduler.

MPL’s memory manager implements heaps as linked lists
of pages, where allocations are performed within each page
via bump-allocation. When a page is exhausted, a fresh page
is allocated and the current heap is extended. These pages
are always allocated by leaf threads; therefore, whenever a
new page is allocated to extend a leaf heap, we mark the
page as a WARD region. Pages are later un-marked by the
scheduler (which is a standard work-stealing scheduler [11])
at forks, which cause leaf heaps to become internal. At each
fork in the program, the scheduler pushes one or more new
child tasks onto its work queue and begins working on one
of the children with a fresh heap. We modified the scheduler
to unmarkWARD pages of the current heap before each fork.

4.3 Software Engineering Effort

Our modifications to MPL are invisible to the application pro-
grammer. Also, the implementation effort is minor because
much of the logic necessary already exists in the memory
management of the language run-time. Our implementation
in MPL involved adding less than 100 lines of new code.

5 WARDen Cache Coherence Protocol
TheWARDen cache coherence protocol augments a standard
MESI (Modified, Exclusive, Shared, Invalid) [63] directory-
based protocol with a WARD state W. Figure 5 shows the
updated directory controller FSA. Cache blocks enter the
WARD statewhen their addresses are containedwithinWARD
regions. When a WARD region is removed, the hardware rec-
onciliation process returns the associated cache blocks to the
MESI states. In this paper, we discuss coherence messages
as defined by Nagarajan, et al. [63].

5.1 The WARD Coherence State

To begin, the directory tracks all activeWARD regions.WARD
regions are therefore defined globally. WARD region mem-
bers transition to the new WARD state when they enter the

99

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

M

S

E

I

W

GetS

GetM

GetM or GetS (WARD region)

GetS
(non-WARD region)

DG Owner

GetM
(non-WARD region)

INV Sharers

 GetM
(non-WARD region)

INV Owner

GetS
(non-WARD

region)
DG Owner

GetM (non-WARD region)
INV Owner

GetM or GetS
(WARD region)

GetM or GetS
(WARD region)

GetS (non-WARD region)

For transitions out of the
WARD state, see Section 5.2

Key

Negative consequences
(Invals, Downgrades, and
their Acks and Data moves)
from transitions due to
Fwd-Get(M/S) requests

INV, DG
Transitions that avoid
INV, DG in WARD regions

 Transitions

Transitions that send
Fwd-Get(M/S) requests
and cause INV, DG

Requests to directory Get(M/E/S)

Figure 5. Simplified WARDen directory FSA. Put(S/E/M/M+data)
transitions/transient states not shown. The WARD state (blue) pre-
vents costly downgrades/invalidations (red) during WARD regions.

directory or upon the first sharing event (i.e., a request from a
second core). The directory effectively disables coherence for
cache blocks in the WARD state. In practice, this means that
read and write requests are fulfilled without downgrading
or invalidating the same block from other caches.

Shared caches (i.e., caches that are used by multiple cores,
such as the LLC) must keep track of the activeWARD regions.
Using this information, they silently handle any upstream
requests from private caches. Similar to the directory, shared
caches furnish values in the WARD state without inhibiting
the use of other copies. For example, consider a cache hierar-
chy with private L1 caches and a shared L2. If the L1 cache
of core A (L1-A) requests write (or read) access to a cache
block currently owned by the L1 of core B (L1-B), the request
would flow through L2. If the block is not a WARD region
member, L2 would invalidate (or downgrade) the block in
L1-B. If the block is in aWARD region, L2 would immediately
approve L1-A’s request without bothering L1-B.

When a shared cache receives a GetS (read request) for a
WARD block, it returns an exclusive copy to the requestor
and hence avoids subsequent upgrade requests even if the
same block is concurrently accessed by other cores (e.g., due
to false sharing). Thus, WARDen pretends as if the block is
private to each core and avoids unnecessary data movement.
As a result, private caches can operate as previously defined
by the standard cache coherence protocol, and their behav-
ior need not be modified. Leaving private caches unaltered
avoids complexity and allows individual cores to operate as
quickly as possible. From their perspective, cache blocks in
WARD regions are unused by others.

5.2 Reconciliation

When a WARD region is removed, reconciliation merges
concurrent updates to cache lines and brings the system to a
coherent state. During reconciliation, all WARD cache blocks
are placed in the proper MESI state across all cores.
Next, we describe our reconciliation process using three

categories: no sharing, false sharing, and true sharing. Note
that the directory tracks which cores are sharing each block,
and mergers are facilitated by sectored caches (§6).

No Sharing: If only one core is holding a block, it has no
sharing. Blocks with no sharing can be instantly converted to
the Exclusive state. We are guaranteed program correctness
in this case because coherence is fundamentally unnecessary
for cache blocks that are not shared.

False Sharing: If a block has multiple sharers that modify
distinct sectors, it has false sharing. Blocks with false sharing
are merged and set to the Shared state. These blocks were
shared by multiple cores, but the individual memory loca-
tions within them were not. Therefore, we know that each
location was written by at most one hardware thread, and
that thread’s local value is the most up-to-date. To reconcile
these blocks, we set the global value of each location to the
local value from the hardware thread that wrote it. Memory
locations that were never written are already consistent.

True Sharing: If a block has multiple sharers that modify
the same sector, it has true sharing. True sharing occurs
when there is a data hazard between separate cores. We are
guaranteed by the WARD property that no RAW hazards
will occur, so this form of true sharing is irrelevant. Also, by
the WARD property, WAW hazards can be resolved in any
order. Thus, we can merge these lines by convenience (e.g.,
pick the value processed last by the directory).

Note the reconciliation for false and true sharing use the
samemechanism. Their distinction is only for understanding.

5.3 Addressing Drawbacks of Cache Coherence

In §2.2, we described inefficiencies in modern coherence
protocols. First is false sharing, whichwe address through the
W state. While a cache block maintains state W, loads/stores
to the same cache line by other hardware threads are ignored,
so false sharing does not lead to coherence traffic.
True sharing presents two improvements. As with false

sharing, the W state avoids coherence traffic. Benign WAW
hazards are handled by reconciliation, resulting in a one-time
cost, which can be overlapped with computation when evic-
tion occurs before the WARD region ends. Additionally, MPL
exposes a less obvious software optimization by unmarking
pages at forks. Just before forking, a thread writes informa-
tion required by the new child thread to execute the forked
function (e.g., function pointer, input arguments, etc.) into
its heap. When the scheduler unmarks these pages, the corre-
sponding cache lines are effectively flushed from the private

100

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

caches to a shared cache via reconciliation. The hardware-
based reconciliation delay is overlapped with the software-
based thread creation delay. Then, the newly-created thread
immediately accesses these cache lines faster because it is
avoiding downgrades to the previous owner’s private caches.
All of these optimizations improve application perfor-

mance by avoiding invalidations (false sharing, unordered
WAWs) and downgrades (false sharing, proactive evictions).

6 WARDen System

The WARDen system is our proposed implementation con-
joining theWARDen protocol with an HLPL implementation.

6.1 Proposed Hardware Implementation

Implementing the WARDen system requires “Add/Remove
Region” instructions, sectored caches, reconciliation logic,
and WARD region storage. We combine the WARDen co-
herence protocol and Parallel ML runtime using two new
instructions. The runtime uses these instructions to signal
the hardware when a WARD region begins/ends. We expect
the addition of two new instructions to have minimal impact.
Sectored caches are necessary for reconciliation to track

which memory locations within a cache block are mutated.
Sectored caches include additional bits that to track writes
at a granularity smaller than the cache block size.

In our proposed implementation, we use byte sectoring to
match the smallest granularity in software. This approach
adds one bit for every eight data bits. Caches already include
substantial metadata including tag bits, coherence state bits,
sharer bitmasks in the LLC, and the overhead of SECDED
codes for error detection/correction. Using CACTI 7.0 [6], we
estimate that byte sectoring on 64-byte cache blocks adds a
cache area overhead of 7.9%. We believe our average speedup
(1.46x) is far greater than could be gained using the added
area less cleverly (e.g., increasing cache size).

Our proposed reconciliation logic is as follows. All WARD
cache blocks are flushed (written back as needed and invali-
dated) from the private caches, and the LLC and directory
process requests in the order they arrive. Any sector of a
flushed cache block with the write flag set is written back to
the shared cache. For the no-sharing and false-sharing cases,
no two local copies of a cache block will have the write flag
set for the same sector. For the true sharing case, the final
value of each sector is taken from whichever cache block is
processed last by the LLC; the WARD property guarantees
the correctness of this random process.

In practice, we find thatWARD regions usually persist long
enough to trivialize the reconciliation delay. During evalu-
ation, our prototype reconciled only one block per 50,000
cycles. Also, optimizations outside the scope of this work,
such as reconciling blocks in parallel using a multi-banked di-
rectory design, could reduce the penalty. For all these reasons,

1 /∗ Ran on two separate cores (myself and partner) ∗/
2 while (iterations--) {
3 while (buf != partnerID) ;
4 buf = myID; }

Figure 6. True sharing microbenchmark kernel.

Table 1. Validation of Sniper model (latencies in cycles).
Scenario Real HW Latency Simulated Latency
Same core 8.738 11.21

Diff. core, same socket 479.68 286.01
Diff. core, diff. socket 1163.23 1213.59

reconciliation can implemented with reasonable overhead.†
Lastly, all directories and shared caches must include stor-

age to track activeWARD regions. Regions can be storedwith
2 pointers (16 bytes) that indicate their beginning and end.
To enable efficient lookups, we model the storage as fully
associative caches implemented using CAM-like structures.
To perform a lookup, we use the CAM’s per-bit equality

comparator to determine the most significant bit that differs
from between the region boundary and the address. Then,
we check the value of the differing bit. If the address bit is 1,
the address is greater than the region boundary. It follows
that if the address bit is 0, the address is less than the region
boundary. To pass the check, an address must be greater than
the lower bound and less than the upper bound.

This logic will require slightly more area than a standard
CAM, but it is substantially simpler than the more compli-
cated TCAM since we are not comparing the results across
non-paired entries. If an address is somehow found in more
than one region, we just mark it as WARD.

Again using CACTI, we estimate supporting 1024 simulta-
neous regions would require less than 0.05% additional area.
This design allows WARD regions to exist for unlimited pe-
riods of time, only bounded by the software’s directives.
Overall, these results indicate that WARDen is feasible

even though we do not claim our implementation is optimal.

6.2 Simulated Prototype

To project the performance improvement and energy savings
of the WARDen system, we implement it within the Sniper
multicore simulator [16, 17]. We employ the latest version
of Sniper [17], which uses an interval simulation technique
capable ofmodeling fine-grained coherence events.We verify
that Sniper correctly models the latencies of data movement
using a true sharing microbenchmark. We include the kernel
of this microbenchmark in Figure 6. The microbenchmark
forces a cache block to “ping-pong" between two cores.

Our test system is a two-socket machine with Intel Xeon
Gold 6126 processors. Each processor has an L1-L2-L3 (la-
tency in cycles: 6-16-71) cache hierarchy, where L1 and L2
are private and L3 is shared. We configure Sniper identically.

†Due to this minimal overhead, our simulator estimates the reconcilia-
tion overhead cost by performing a cache flush.

101

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

Table 2. Simulated system specifications.
Parameter Value Parameter Value
L1 Size 32 KB L1/L2 Associativity 8
L2 Size 256 KB L3 Associativity 20

L3 Size (per core) 2.5 MB L1/L2/L3 latencies 6-16-71 cycles
Cache Block Size 64 B Frequency 3.3 GHz
Cores per Socket 12 Intersocket latencies vary, see text

We evaluate the true sharing microbenchmark in three sce-
narios, in which the competing hardware threads are on (1)
the same core, (2) different cores but the same socket, and (3)
different cores and different sockets. We measure the cycles
per iteration over 100 million iterations. We run each sce-
nario 10 times and report the measured averages for real and
simulated hardware in Table 1. We observe that both the real
hardware and simulated latencies align closely. While the
simulator latencies are not identical to that of real hardware,
they allow for accurate relative comparisons.

7 Evaluation
We compare the performance and energy of standard MPL
binaries with the MESI cache coherence protocol versus
the WARDen protocol using Sniper. We measure energy
consumption using the McPAT [57] power model included
with Sniper. Table 2 shows the configuration of the machine
and model. We study one and two socket versions and likely
future hardware: many-socket and disaggregated systems.
7.1 Evaluation Methodology

We evaluate the combination of MPL andWARDen using the
PBBS benchmark suite [78]. PBBS is a well-cited suite that
includes benchmarks from many problem domains, includ-
ing graph analysis, numerical algorithms, text/image/audio
processing, computational geometry, and computer graphics.
These benchmarks have been ported to Parallel ML [67] and
compiled using MPL, ensuring disentanglement.

We tune benchmark input sizes so each executes without
simulation in .1-.5 seconds, resulting in execution times on
the simulator between .5-4 hours. We chose these times to
feasibly explore multiple configurations.
7.2 Modern Hardware

Single socket:We begin with a single socket version of the
configuration shown in Table 2. As shown in Figure 7(a),
WARDen produces speedups of 1–1.8x, with a mean speedup
of 1.24x. Figure 7(b) shows total processor and interconnect
energy gains. There is more variation in these, but the av-
erages are 17.4% and 17.3%, respectively. Total processor
energy decreases with WARDen in large part because exe-
cution time decreases. Network energy decreases due to the
smaller number of coherence messages and data transfers.
The performance/power overhead of tracking/reconciling
WARD regions negatively impacts the results for benchmarks
which benefit minimally from WARDen (e.g., make_array).

Dual socket: We now study how WARDen scales to a
dual socket system with two of the single-socket processors.

N
or

m
al

iz
ed

 S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

ded
up

dmm fib grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

MEAN

(a) Performance (Speedup)

Pe
rc

en
t E

ne
rg

y
Sa

vi
gn

s

-25
0

25
50
75

100

ded
up

dmm fib
grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

MEAN

Interconnect Total Processor

(b) Energy
Figure 7. Performance and energy gains on single socket.

N
or

m
al

iz
ed

 S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

2.5

ded
up

dmm fib grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

MEAN

(a) Performance (Speedup)

Pe
rc

en
t E

ne
rg

y
Sa

vi
ng

s

-10
10
30
50
70
90

ded
up

dmm fib
grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

MEAN

Interconnect Total Processor

(b) Energy
Figure 8. Performance and energy gains on dual socket.

Figure 8(a) shows thatWARDen produces speedups of 1–2.1x
with a mean of 1.46x. These speedups are higher than those
from the single socket case, suggesting that the benefits of
WARDen scale with machine size. We also see more separa-
tion between benchmarks that benefit from WARDen (e.g.,
palindrome) and those who do not (e.g., dedup).
As shown in Figure 8(b), energy savings increase on the

dual socket system compared to the single socket system. For
this case, interconnect energy savings, with a mean of 52.9%,
outpace the total energy reduction, with a mean of 23.1%,
and in some cases, they are the sole driving factor in the cu-
mulative decrease. This result aligns with our expectations
because coherence messages are now passed between sock-
ets, therefore consuming far more energy in the network.
WARDen is able to eliminate many of these messages. Across
the less-accelerated benchmarks, we do not see a negative
effect greater than a 5% power increase.

102

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada
In

v
+

D
ow

n
R

ed
uc

ed
 p

er
 K

ilo

N
or

m
al

iz
ed

 S
pe

ed
up

0

10

20

30

40

1

2

3

4

ded
up

dmm fib grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

Inv./Down. Reduction Speedup

Figure 9. Dual socket speedup with the reduction in invalidations
and downgrades.

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

0
25
50
75
100

ded
up

dmm fib grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

Down. Reduction % Inv. Reduction %

Figure 10. Percent of reduction by invalidations and downgrades.

Analysis: To show that our improvements to cache co-
herence generate our observed speedups, we study the dual
socket results in greater detail. For all the benchmarks ex-
cept tokens, WARDen recognizes the vast majority (90%+) of
memory accesses as occurring in a WARD region. There is
no correlation with our results because many accesses are to
private variables for which there will be no coherence traffic
anyway. To understand the effect of WARDen, we focus on
the memory accesses that would incur costly downgrades
or invalidations with a standard coherence protocol.
In Figure 9, we compare the dual-socket speedups with

the reduction in invalidations and downgrades. We count the
number of invalidations and downgrades avoided per 1000 in-
structions executed. Note that invalidations and downgrades
are counted per cache, so a single execution may cause many
invalidations or downgrades throughout the cache hierar-
chy. Figure 9 shows a positive correlation between reducing
costly memory events and speedup. For many benchmarks,
WARDen avoids invalidations and downgrades, which in
turn accelerates performance. Conversely, benchmarks with
small reductions of these events show little speedup.

A few measurements in Figure 9 appear anomalous. Three
benchmarks (nqueens, ray, and suffix_array) show significant
speedups, yet have relatively small reductions in coherence
events. Meanwhile, fib, msort, primes, and quickhull under-
perform given what might be expected given their relatively
large reductions in coherence events.
To dive deeper, we show the breakdown of invalidations

and downgrades by percentage in Figure 10. Downgrades
are generally more important than invalidations for applica-
tion performance because they affect load operations. Loads
are blocking operations that pause dependent computation.
In contrast, invalidations are caused by store operations,

%
 IP

C
 Im

pr
ov

em
en

t

-25

25

75

125

ded
up

dmm fib grep

mak
e_

arr
ay

mso
rt nn

nquee
ns

pali
ndro

me

prim
es

quick
hull

ray

su
ffix

-ar
ray

toke
ns

Figure 11. Percentage IPC improvement.

which are injected into the processor’s store buffer and com-
mit without waiting for their completion in the memory
hierarchy. Unless the store buffer is full, which is relatively
rare, store latency (and hence invalidation latency) does not
impact execution. Figure 10 shows that Nqueens, ray, and
suffix_ray mostly avoid downgrades (77.7%, 86.4%, and 98.3%,
respectively). Contrast these results with a more subtle out-
lier, fib. Fib experiences a significant reduction in negative
coherence events but does not see any appreciable speedup.
This likely occurs because fib has the lowest percentage of
downgrades out of all benchmarks (2.65%).
Now, we explain the results for msort, primes, and quick-

hull. All three mostly avoid downgrades, so we would expect
more substantial speedups. However, the performance of
these benchmarks is not bound by coherence events. To
understand these benchmarks, we plot the percent IPC im-
provement generated by WARDen in Figure 11. IPC helps
us to understand the application’s ability to continue exe-
cuting instructions despite coherence delays. Benchmarks
with low IPC improvements do not take advantage of the
faster memory accesses provided by WARDen, indicating
their speedup should be lower. Surely enough, all of msort,
primes, and quickhull show minimal IPC improvement from
avoiding downgrades and invalidations.

Perhaps the most interesting measurement in Figure 11 is
ray, which shows an IPC reduction despite its large speedup.
We believe this IPC result indicates an improvement to syn-
chronization delays. The PBBS benchmark suite uses busy-
waiting synchronization primitives implemented using com-
pare_and_swap atomics. Busy waiting involves executing
many cheap read/write instructions. We theorize that WAR-
Den’s improvements help individual threads reach synchro-
nization points more quickly and evenly, eliminating fast
waiting instructions, and thus lowering the IPC despite im-
proving application performance. We observe a 49.5% re-
duction in load instructions executed by ray that justifies
this claim. This reduction of instructions executed also fur-
ther supports the reported speedup. We continue to study
these benchmarks in detail to completely understand their
complex interactions with WARDen.

7.3 Future Machines

Many Sockets: In the future, we expect to see systems with
many more sockets become more commonplace. Programs

103

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

0

2

4

6

8

dm
m

gr
ep nn

pa
lin
dr

ME
AN

(a) Speedup
Pe

rc
en

t E
ne

rg
y

Sa
vi

ng
s

0

25

50

75

100

dmm grep nn palindrome MEAN

In-Processor Network Total Processor

(b) Energy
Figure 12. Performance and energy gains on disaggregated.

written in HLPLs are a great candidate to run on such ma-
chines because they allow expression of algorithmic paral-
lelism, making readily available the higher levels of paral-
lelism such machines require. In this case, interconnect la-
tencies (like those in Table 1) will continue to rise. We expect
the advantages of WARDen to become even more prevalent
in such a situation. To better understand why, we consider
another likely future hardware scheme: disaggregation.

Disaggregated: To model a disaggregated system, we
emulate a 2 node machine with a remote access time of 1
𝜇s. This time is conservative, outstripping the performance
of state of the art systems [15, 36]. We include the most
promising benchmarks from our study of modern hardware.
Figure 12 shows that benchmark speedup improves dra-

matically, to about a mean of 3.8×, when we disaggregate the
two processors from their shared memory hierarchy. As seen
in Figure 12, network energy savings improves to a mean of
∼77.1% and processor energy savings improves to a mean of
∼49.5%. This result makes sense because our disaggregated
system has a L3 miss penalty more than 3× greater than
our standard dual socket system. Coherence downgrades
and flushes are therefore more costly, which in turn makes
WARDen more valuable.

A subtle result of this experiment is that disaggregation ap-
pears to widen the performance-improvement gap between
benchmarks that drastically benefit fromWARDen and those
with more middling results. Grep was the weakest performer
of the selected benchmarks in the experiments simulating
standard hardware, and its speedup did not grow nearly as
much as the others in the disaggregated case.

8 Related Work
Removing/deactivating coherence has been proposed before
in hardware-supported, compiler-directed (HSCD) cache co-
herence [23], OS-driven coherence deactivation [24], and
software cache coherence [5, 20, 22, 25, 51, 64, 66, 85, 86].
Our work is distinct because we drive coherence deactivation
from the properties of HLPLs, which can provide the informa-
tion to control coherence by construction. In contrast, these
prior works give this task to the programmer (pragmas) or re-
cover this information through run-time inspector-executor
methods and compiler analyses. These analyses treat en-
tire arrays as single variables and fail to detect false shar-
ing [20, 22], or limit array subscripts to loop iterators [25].
Others rely on software for triggering coherence actions

and hardware for selective self-invalidations but incur high
overhead in lock-intensive programs [5] or are restricted to
unity loop iterators in affine loops without conditionals [64].

Other works improve cache coherence for discplinedmem-
ory programs. DeNovo [21, 84] simplifies hardware cache
coherence by banning “wild shared-memory behaviors", but
it uses a restrictive programming model that requires user-
annotated code. VIPS-M [75] avoids directory accesses and
invalidations given data-race-free guarantees from software.
This approach is limited compared to WARDen because it
only supports DRF programs. In addition, it does not support
legacy applications, meaning all programs must enforce DRF.
SPEL expands VIPS by implementing a dual cache coherence
protocol, allowing for legacy, non-DRF applications [74].
SPEL relies on static compiler analysis to identify DRF code
regions, which limits its scope compared to WARDen. The
static analysis will fail on any disentangled, non-DRF regions.
Also, WARDen avoids any compile-time overhead/analysis.
Jimborean et al [47] recognize DRF regions in programs man-
ually parallelized with pthreads using static compiler analysis
and target the SPEL dual cache coherence protocol. The per-
formance of this approach is limited by the conservativeness
of modern alias/pointer-analysis; it is unable to detect up to
50% of potential extended DRF regions. In contrast, WARDen
avoids the limitations of compile-time analysis by targeting
the disentanglement property of HLPLs. For all these DRF-
based works, note that disentanglement encompasses DRF.
Therefore, these works could be tweaked to target WARDen,
allowing WARDen to support some non-HLPL programs.

Alternative cache designs and protocols [18, 28, 43, 50, 51,
73] and transactionalmemory [40, 41, 77] also relax hardware
coherence according to higher-level directives.

9 Conclusion

Lower-level parallel languages have been implicitly and ex-
plicitly co-designed with hardware to varying degrees for
decades. With HLPLs on the rise, it is time to explore new
co-design opportunities they create. We have shown that it is
uniquely possible to automatically reign in the cost of cache
coherence for HLPLs without burdening the programmer.
The artifact for this work is available online [91].

Acknowledgments

This research was partially supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the Na-
tional Nuclear Security Administration, by the U.S. Depart-
ment of Energy, Office of Science, under Contract DE-AC02-
06CH11357, and by the U.S. National Science Foundation
via awards CNS-1763743, CCF-2028851, CCF-2119069, CCF-
2115104, CCF-2119352, CCF-1901381, CCF-2107241, CCF-
2107042, CCF-1908488, and CCF-2118708.

104

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

A Artifact Appendix

A.1 Abstract

This artifact is a virtual machine of Red Hat Enterprise Linux
(RHEL) containing the WARDen prototype and its dependen-
cies. The artifact is pre-installed in the "cgo_artifact" account.
The password is the same as the username: cgo_artifact. All
the PBBS benchmarks used in the paper are also included.
This artifact requires VMware Workstation 17 player to load
and run the VM, which can be freely downloaded online.

A.2 Artifact Check-List (Meta-Information)

• Algorithm: No
• Program: PBBS, Included
• Compilation: MPL, Included
• Transformations: No
• Binary: No
• Data set: Included with the benchmark suite
• Run-time environment: No
• Hardware: None (results are simulated using Sniper
7.3)

• Software:MLton (release 20210117), and Sniper 7.3 and
its dependencies (pin 3.13 & mcpat 1.0), as well as ver-
sions of any software used byMPL (gcc, ld, etc.). These
dependencies are included in the virtual machine.

• Run-time environment: N/A
• Execution: Sole user, approximately 4 days to run
• Metrics: Simulated execution time, other architectural
statistics

• Output: Command line text output for each benchmark
• Experiments: The experiments can be run using in-
cluded scripts. Detailed instructions are included in
the following sections.

• Howmuchdisk space required (approximately)?: 40GB
• How much time is needed to prepare workflow (ap-
proximately)?: A few hours

• How much time is needed to complete experiments
(approximately)?: 4 days

• Publicly available?: Yes
• Code licenses (if publicly available)?:HPND (MPL),MIT
+ Interval Academic License (Sniper)

• Data licenses (if publicly available)?: No
• Workflow framework used?: Complilation and bench-
marking is automated using scripts and𝑚𝑎𝑘𝑒.

• Archived (provide DOI)?: 10.5281/zenodo.7374334

A.3 Description

A.3.1 How Delivered
A compressed folder containing the VM can be downloaded from

the Zenodo at: https://doi.org/10.5281/zenodo.7374334 .

A.3.2 Hardware Dependencies
The artifact must be run on some hardware capable of running

the VM. The amount of disk space required by the VM is approxi-
mately 40 GB.

A.3.3 Software Dependencies
To run the artifact, VMware Workstation 17 Player is required.

All software related to the paper comes pre-installed in the pro-
vided VM. We specifically tested with version 17.0.0 build-20800274
running on Ubuntu 20.04.

A.3.4 Data Sets
The input data sets for the benchmarks are already included in

the VM.

A.4 Installation

Download the VM compressed folder and VMware Workstation 17
Player. Extract the compressed folder at the top level of VMware’s
directory. OpenVMware Player and select "Open a VirtualMachine".
Select the newly-extracted folder. This will add a RHEL VM to
the left side. Power on the VM, and choose "I copied it" when
prompted. The VM should now boot to the login screen. Login
to the "cgo_artifact" account. The password is the same as the
username: cgo_artifact. Open a terminal using the "Activities" tab
in the top left corner.

A.5 Experiment Workflow

After loading the VM, enter the 𝑠𝑛𝑖𝑝𝑒𝑟_𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒/𝑡𝑒𝑠𝑡 directory to
perform experiments. In this directory, there is a file named 𝐸𝑁𝑉
that sets important environment variables. At the beginning of each
new session, run source ENV to establish the environment. Then,
using simple𝑚𝑎𝑘𝑒 commands, evaluators can reproduce the exper-
iments from our paper. The following workflow is automatically
executed when invoking make all_pbbs in the VM.

1. Each benchmark is run using the architectural simulator
twice: once with the standard coherence protocol, and once
with the WARDen protocol.

2. Simulated execution time/power data (Figures 7/8) and sta-
tistics regarding the number of downgrades/invalidations
and IPC (Figures 9/10/11) are all printed to the command
line.

A.6 Evaluation and Expected Result

To reproduce the experiments, there are four relevant commands:
• make single_pbbs: This command runs a single benchmark.
To specify the benchmark, set the 𝐵𝐸𝑁𝐶𝐻 value to the
name of the benchmark. Example usage: make single_pbbs
BENCH=fib runs the 𝑓 𝑖𝑏 benchmark.

• make all_pbbs: This command runs all the PBBS benchmarks
used in this paper. This command has no arguments.

• make activate_one_socket: This command switches the sim-
ulator to the one-socket configuration, as used in Figure
7.

• make activate_two_socket: This command switches the sim-
ulator to the two socket configuration, as used in Figure 8
and following analysis.

To reproduce all the single-socket and two-socket experiments
from the paper, use the following order:

1. cd sniper_coherence/test
2. source ENV
3. make activate_one_socket
4. make all_pbbs
5. make activate_two_socket
6. make all_pbbs
We expect the speedups and power results to align very closely

to Figures 7 and 8.

105

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

A.7 Experiment Customization

The primary way to customize our experiments is by changing the
input values for the benchmarks. Each benchmark has its own direc-
tory under 𝑠𝑛𝑖𝑝𝑒𝑟_𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒/𝑡𝑒𝑠𝑡/𝑝𝑏𝑏𝑠 with individual READMEs
that include suggested input sizes. To change the input, edit the
benchmark’s Makefile.

Our workflow can be customized to evaluate different applica-
tions, assuming they are compatible with our software framework
(e.g., written in Parallel ML). To add a new benchmark, simply cre-
ate a new folder under 𝑝𝑏𝑏𝑠 with a Makefile matching the form of
the others, and all the existing scripts will work.

References
[1] Sarita V Adve and Mark D Hill. 1990. Weak ordering—a new definition.

ACM SIGARCH Computer Architecture News 18, 2SI (1990), 2–14.
[2] Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably Space

Efficient Parallel Functional Programming. In Proceedings of the 48th
Annual ACM Symposium on Principles of Programming Languages
(POPL)".

[3] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic,
Eiman Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and
David Nellans. 2017. MCM-GPU: Multi-chip-module GPUs for con-
tinued performance scalability. In 2017 ACM/IEEE 44th Annual In-
ternational Symposium on Computer Architecture (ISCA). 320–332.
https://doi.org/10.1145/3079856.3080231

[4] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-structures:
Data Structures for Parallel Computing. ACM Trans. Program. Lang.
Syst. 11, 4 (Oct. 1989), 598–632.

[5] Thomas J. Ashby, Pedro Díaz, and Marcelo Cintra. 2011. Software-
Based Cache Coherence with Hardware-Assisted Selective Self-
Invalidations Using Bloom Filters. IEEE Trans. Comput. 60, 4 (2011),
472–483. https://doi.org/10.1109/TC.2010.155

[6] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New tools for
interconnect exploration in innovative off-chip memories. ACM Trans-
actions on Architecture and Code Optimization (TACO) 14, 2 (2017),
1–25.

[7] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.
Leiserson. 2004. On-the-Fly Maintenance of Series-Parallel Relation-
ships in Fork-Join Multithreaded Programs. In 16th Annual ACM Sym-
posium on Parallel Algorithms and Architectures. 133–144.

[8] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun.
ACM 39, 3 (1996), 85–97.

[9] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian
Shun. 2012. Internally deterministic parallel algorithms can be fast
(PPoPP ’12). 181–192.

[10] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha,
and Siddhartha Chatterjee. 1994. Implementation of a Portable Nested
Data-Parallel Language. J. Parallel Distrib. Comput. 21, 1 (1994), 4–14.

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi-
threaded Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999),
720–748.

[12] Robert L Bocchino Jr, Vikram S Adve, Danny Dig, Sarita V Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-
mons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect
system for deterministic parallel Java. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages
and applications. 97–116.

[13] Bull. 2021. Bull Bullion S16 Server.
http://www.scaleupservers.com/Bullion-S16-Server.asp.

[14] Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Miquel Moretó,
and Marc Casas. 2018. Reducing Cache Coherence Traffic with a
NUMA-Aware Runtime Approach. IEEE Transactions on Parallel and

Distributed Systems 29, 5 (2018), 1174–1187. https://doi.org/10.1109/
TPDS.2017.2787123

[15] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software
Runtimes for Disaggregated Memory. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). As-
sociation for Computing Machinery, New York, NY, USA, 79–92.
https://doi.org/10.1145/3445814.3446713

[16] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper:
Exploring the Level of Abstraction for Scalable and Accurate Parallel
Multi-Core Simulations. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC).

[17] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and
Lieven Eeckhout. 2014. An Evaluation of High-Level Mechanistic
Core Models. ACM Transactions on Architecture and Code Optimization
(TACO), Article 5 (2014), 23 pages. https://doi.org/10.1145/2629677

[18] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat,
Howard David, Dave Dunning, Joshua Fryman, Ivan Ganev, Roger A.
Golliver, Rob Knauerhase, Richard Lethin, Benoit Meister, Asit K.
Mishra, Wilfred R. Pinfold, Justin Teller, Josep Torrellas, Nicolas Vasi-
lache, Ganesh Venkatesh, and Jianping Xu. 2013. Runnemede: An ar-
chitecture for Ubiquitous High-Performance Computing. In 2013 IEEE
19th International Symposium on High Performance Computer Architec-
ture (HPCA). 198–209. https://doi.org/10.1109/HPCA.2013.6522319

[19] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H.
Randall, and Andrew F. Stark. 1998. Detecting data races in Cilk
programs that use locks. In Proceedings of the 10th ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’98).

[20] H. Cheong and A.V. Veidenbaum. 1988. A cache coherence scheme
with fast selective invalidation. In [1988] The 15th Annual International
Symposium on Computer Architecture. Conference Proceedings. 299–307.
https://doi.org/10.1109/ISCA.1988.5240

[21] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima
Honarmand, Sarita V Adve, Vikram S Adve, Nicholas P Carter, and
Ching-Tsun Chou. 2011. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. In 2011 International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 155–166.

[22] L. Choi and Pen-Chung Yew. 1994. A compiler-directed cache co-
herence scheme with improved intertask locality. In Supercomputing
’94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing.
773–782. https://doi.org/10.1109/SUPERC.1994.344343

[23] Lynn Choi and Pen-Chung Yew. 1996. Compiler and Hardware Support
for Cache Coherence in Large-Scale Multiprocessors: Design Consid-
erations and Performance Study. In Proceedings of the 23rd annual
international symposium on Computer architecture.

[24] Blas Cuesta, Alberto Ros, María E Gómez, Antonio Robles, and José
Duato. 2011. Increasing the effectiveness of directory caches by de-
activating coherence for private memory blocks. In 2011 38th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 93–
103.

[25] Ervan Darnell, John M. Mellor-Crummey, and Ken Kennedy. 1992.
Automatic Software Cache Coherence through Vectorization. In Pro-
ceedings of the 6th International Conference on Supercomputing (Wash-
ington, D. C., USA) (ICS ’92). 129–138. https://doi.org/10.1145/143369.
143398

[26] Abhishek Das, Matt Schuchhardt, Nikos Hardavellas, Gokhan Memik,
and Alok Choudhary. 2012. Dynamic Directories: A mechanism for re-
ducing on-chip interconnect power in multicores. In Proceedings of the
Conference on Design, Automation Test in Europe (Dresden, Germany).
479–484.

[27] Yigit Demir, Yan Pan, Seukwoo Song, Nikos Hardavellas, John Kim, and
Gokhan Memik. 2014. Galaxy: A High-Performance Energy-Efficient
Multi-Chip Architecture Using Photonic Interconnects. In Proceedings

106

https://doi.org/10.1145/3079856.3080231
https://doi.org/10.1109/TC.2010.155
https://doi.org/10.1109/TPDS.2017.2787123
https://doi.org/10.1109/TPDS.2017.2787123
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/2629677
https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1109/ISCA.1988.5240
https://doi.org/10.1109/SUPERC.1994.344343
https://doi.org/10.1145/143369.143398
https://doi.org/10.1145/143369.143398

WARDen: Specializing Cache Coherence for High-Level Parallel Languages CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

of the 28th ACM International Conference on Supercomputing (Munich,
Germany) (ICS’14).

[28] Marco Elver and Vijay Nagarajan. 2014. TSO-CC: Consistency directed
cache coherence for TSO. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 165–176.

[29] Natalie Enright Jerger, Li-Shiuan Peh, and Mikko Lipasti. 2008. Vir-
tual Tree Coherence: Leveraging Regions and In-Network Multicast
Trees for Scalable Cache Coherence. In International Symposium on
Microarchitecture. 35–46.

[30] Ericsson. 2017. Time for memory disaggregation?
https://www.ericsson.com/en/blog/2017/5/time-for-memory-
disaggregation.

[31] Mingdong Feng and Charles E. Leiserson. 1999. Efficient Detection of
Determinacy Races in Cilk Programs. Theory of Computing Systems
32, 3 (1999), 301–326.

[32] Sevin Fide and Stephen Jenks. 2008. Proactive use of shared L3 caches
to enhance cache communications in multi-core processors. IEEE
Computer Architecture Letters 7, 2 (2008), 57–60.

[33] Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in
Parallel. Master’s thesis. Massachusetts Institute of Technology, De-
partment of Electrical Engineering and Computer Science, Cambridge,
MA.

[34] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Im-
plicitly threaded parallelism in Manticore. Journal of Functional Pro-
gramming 20, 5-6 (2011), 1–40.

[35] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-
Berlin. 2009. Reducers and Other Cilk++ Hyperobjects. In 21st Annual
ACM Symposium on Parallelism in Algorithms and Architectures. 79–90.

[36] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient memory disaggregation with infin-
iswap. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17). 649–667.

[37] Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and
Matthew Fluet. 2018. Hierarchical memory management for mutable
state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018. 81–93.

[38] Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a
Multiprocessor. In Proceedings of the 1984 ACM Symposium on LISP
and functional programming (Austin, Texas, United States) (LFP ’84).
ACM, 9–17.

[39] Kevin Hammond. 2011. Why Parallel Functional Programming Mat-
ters: Panel Statement. In Reliable Software Technologies - Ada-Europe
2011 - 16th Ada-Europe International Conference on Reliable Software
Technologies, Edinburgh, UK, June 20-24, 2011. Proceedings. 201–205.

[40] TimHarris, James Larus, and Ravi Rajwar. 2010. Transactional memory.
Synthesis Lectures on Computer Architecture 5, 1 (2010), 1–263.

[41] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory:
Architectural support for lock-free data structures. In Proceedings of
the 20th annual international symposium on Computer architecture.
289–300.

[42] Hewlett Packard Enterprise. 2021. HPE Integrity MC990 X Server.
https://www.hpe.com/psnow/doc/PSN1008798952USEN.pdf.

[43] Derek R. Hower. 2012. Acoherent Shared Memory. Ph. D. Dissertation.
USA. Advisor(s) Hill, Mark D. AAI3522117.

[44] C.C. Hu, M.F. Chen, W.C. Chiou, and Doug C.H. Yu. 2019. 3D Multi-
chip Integration with System on Integrated Chips (SoIC™). In 2019
Symposium on VLSI Technology. T20–T21. https://doi.org/10.23919/
VLSIT.2019.8776486

[45] IBM. 2018. Advancing cloud with memory disaggregation.
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-
memory-disaggregation/.

[46] Subramanian S. Iyer. 2016. Heterogeneous Integration for Performance
and Scaling. IEEE Transactions on Components, Packaging and Man-
ufacturing Technology 6, 7 (2016), 973–982. https://doi.org/10.1109/

TCPMT.2015.2511626
[47] Alexandra Jimborean, Jonatan Waern, Per Ekemark, Stefanos Kaxiras,

and Alberto Ros. 2017. Automatic detection of extended data-race-free
regions. In 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 14–26.

[48] Robert L. Bocchino Jr., Stephen Heumann, Nima Honarmand, Sarita V.
Adve, Vikram S. Adve, Adam Welc, and Tatiana Shpeisman. 2011. Safe
nondeterminism in a deterministic-by-default parallel language. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 535–548.

[49] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel Loh. 2015.
Enabling Interposer-based Disintegration of Multi-core Processors. In
Proceedings of the International Symposium on Microarchitecture.

[50] Pete Keleher, Alan L Cox, and Willy Zwaenepoel. 1992. Lazy release
consistency for software distributed shared memory. ACM SIGARCH
Computer Architecture News 20, 2 (1992), 13–21.

[51] Wooil Kim, Sanket Tavarageri, P. Sadayappan, and Josep Torrellas. 2016.
Architecting and Programming a Hardware-IncoherentMultiprocessor
Cache Hierarchy. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 555–565. https://doi.org/10.1109/IPDPS.
2016.76

[52] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin
Taranov, Dejan S. Milojicic, and Gustavo Alonso. 2021. Farview: Dis-
aggregated Memory with Operator Off-loading for Database Engines.
CoRR abs/2106.07102 (2021). arXiv:2106.07102 https://arxiv.org/abs/
2106.07102

[53] Lindsey Kuper and Ryan R Newton. 2013. LVars: lattice-based data
structures for deterministic parallelism. In Proceedings of the 2nd ACM
SIGPLAN workshop on Functional high-performance computing. ACM,
71–84.

[54] Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R. New-
ton. 2014. Taming the Parallel Effect Zoo: Extensible Deterministic
Parallelismwith LVish. In Proceedings of the 35th ACMSIGPLANConfer-
ence on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). 2–14.

[55] Youngeun Kwon and Minsoo Rhu. 2019. A Disaggregated Memory
System for Deep Learning. IEEE Micro 39, 5 (2019), 82–90. https:
//doi.org/10.1109/MM.2019.2929165

[56] Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tol-
mach. 2007. Lightweight concurrency primitives for GHC. In Proceed-
ings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg,
Germany, September 30, 2007. 107–118.

[57] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. 2009. McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In MICRO.

[58] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated
Memory for Expansion and Sharing in Blade Servers. In Proceedings
of the 36th Annual International Symposium on Computer Architecture
(Austin, TX, USA) (ISCA ’09). 267–278. https://doi.org/10.1145/1555754.
1555789

[59] John Mellor-Crummey. 1991. On-the-fly Detection of Data Races
for Programs with Nested Fork-Join Parallelism. In Proceedings of
Supercomputing’91. 24–33.

[60] Moor Insights and Strategy. 2013. Intel’s Disaggre-
gated Server Rack. https://moorinsightsstrategy.com/wp-
content/uploads/2013/08/Intels-Disagggregated-Server-Rack-
by-Moor-Insights-Strategy.pdf.

[61] MPL [n. d.]. MPL compiler. https://github.com/mpllang/mpl.
[62] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H.

Loh, Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet

107

https://doi.org/10.23919/VLSIT.2019.8776486
https://doi.org/10.23919/VLSIT.2019.8776486
https://doi.org/10.1109/TCPMT.2015.2511626
https://doi.org/10.1109/TCPMT.2015.2511626
https://doi.org/10.1109/IPDPS.2016.76
https://doi.org/10.1109/IPDPS.2016.76
https://arxiv.org/abs/2106.07102
https://arxiv.org/abs/2106.07102
https://arxiv.org/abs/2106.07102
https://doi.org/10.1109/MM.2019.2929165
https://doi.org/10.1109/MM.2019.2929165
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://github.com/mpllang/mpl

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Wilkins et al.

Technology and Design for the AMD EPYC™ and Ryzen™ Proces-
sor Families : Industrial Product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). 57–70.
https://doi.org/10.1109/ISCA52012.2021.00014

[63] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood.
2020. A Primer on Memory Consistency and Cache Coherence: Second
Edition.

[64] M. F. P. O’Boyle, R. W. Ford, and E. A. Stohr. 2003. Towards General
and Exact Distributed Invalidation. J. Parallel Distrib. Comput. 63, 11
(Nov. 2003), 1123–1137. https://doi.org/10.1016/j.jpdc.2003.07.007

[65] OpenMP 5.0 2018. OpenMP Application Programming Interface, Version
5.0. Accessed in July 2018.

[66] Susan Owicki and Anant Agarwal. 1989. Evaluating the performance
of software cache coherence. ACM SIGARCH Computer Architecture
News 17, 2 (1989), 230–242.

[67] Parallel ML Benchmarks [n. d.]. https://github.com/mpllang/parallel-
ml-bench.

[68] Ivy Peng, Roger Pearce, and Maya Gokhale. 2020. On the Memory
Underutilization: Exploring Disaggregated Memory on HPC Systems.
In 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). 183–190. https://doi.
org/10.1109/SBAC-PAD49847.2020.00034

[69] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and
Manuel M. T. Chakravarty. 2008. Harnessing the Multicores: Nested
Data Parallelism in Haskell. In FSTTCS. 383–414.

[70] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch.
2016. Hierarchical Memory Management for Parallel Programs. In
Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming (Nara, Japan) (ICFP 2016). ACM, New York, NY,
USA, 392–406.

[71] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. 2010. Efficient Data Race Detection for Async-Finish
Parallelism. In Runtime Verification, Howard Barringer, Ylies Falcone,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore
Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in
Computer Science, Vol. 6418. Springer Berlin / Heidelberg, 368–383.

[72] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection for
Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’12). 531–542.

[73] Yuxin Ren, Gabriel Parmer, and Dejan Milojicic. 2020. Ch’i: Scaling Mi-
crokernel Capabilities in Cache-Incoherent Systems. In 2020 IEEE/ACM
International Workshop on Runtime and Operating Systems for Super-
computers (ROSS). 12–21. https://doi.org/10.1109/ROSS51935.2020.
00007

[74] Alberto Ros and Alexandra Jimborean. 2015. A dual-consistency cache
coherence protocol. In 2015 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 1119–1128.

[75] Alberto Ros and Stefanos Kaxiras. 2012. Complexity-effective multi-
core coherence. In 2012 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). 241–251.

[76] Matthew Schuchhardt, Abhishek Das, Nikos Hardavellas, Gokhan
Memik, and Alok Choudhary. 2013. The Impact of Dynamic Directories
on Multicore Interconnects. IEEE Computer 46, 10 (October 2013), 32–
39.

[77] Nir Shavit and Dan Touitou. 1997. Software transactional memory.
Distributed Computing 10, 2 (1997), 99–116.

[78] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,

Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan.
2012. Brief Announcement: The Problem Based Benchmark Suite
(SPAA ’12). 68–70. https://doi.org/10.1145/2312005.2312018

[79] KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom
Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Mad-
havapeddy. 2020. Retrofitting parallelism onto ocaml. arXiv preprint
arXiv:2004.11663 (2020).

[80] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq
Jaffer, and Anil Madhavapeddy. 2021. Retrofitting effect handlers
onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 206–
221.

[81] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom
Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Mad-
havapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM
Program. Lang. 4, ICFP (2020), 113:1–113:30.

[82] Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs.
Ph. D. Dissertation. Carnegie Mellon University. https://www.cs.cmu.
edu/~rwh/theses/spoonhower.pdf

[83] Rabin Sugumar, Mehul Shah, and Ricardo Ramirez. 2021. Marvell
ThunderX3: Next-Generation Arm-Based Server Processor. IEEE Micro
41, 2 (2021), 15–21. https://doi.org/10.1109/MM.2021.3055451

[84] Hyojin Sung, Rakesh Komuravelli, and Sarita V. Adve. 2013. DeN-
ovoND: Efficient Hardware Support for Disciplined Non-Determinism.
In Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Houston, Texas, USA) (ASPLOS ’13). 13–26. https://doi.org/10.1145/
2451116.2451119

[85] Igor Tartalja and Veljko Milutinovic. 1996. The Cache Coherence
Problem in Shared Memory Multiprocessors: Software Solutions. In
XVI International Symposium on Nuclear Electronics and VI Interna-
tional School on Automation and Computing in Nuclear Physics and
Astrophysics. 131.

[86] Sanket Tavarageri, Wooil Kim, Josep Torrellas, and P Sadayappan.
2016. Compiler support for software cache coherence. In 2016 IEEE
23rd International Conference on High Performance Computing (HiPC).
IEEE, 341–350.

[87] Josep Torrellas, HS Lam, and John L. Hennessy. 1994. False sharing
and spatial locality in multiprocessor caches. IEEE Trans. Comput. 43,
6 (1994), 651–663.

[88] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting An-
gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race
Detection for Fork-Join Programs. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. 83–94.

[89] Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement
detection with near-zero cost. Proc. ACM Program. Lang. 6, ICFP (2022),
679–710. https://doi.org/10.1145/3547646

[90] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020.
Disentanglement in Nested-Parallel Programs. In Proceedings of the
47th Annual ACM Symposium on Principles of Programming Languages
(POPL)".

[91] Michael Wilkins, Sam Westrick, Vijay Kandiah, Alex Bernat, Brian
Suchy, Enrico Armenio Deiana, Simone Campanoni, Umut Acar, Pe-
ter Dinda, and Nikos Hardavellas. 2022. Artifact for "WARDen:
Specializing Cache Coherence for High-Level Parallel Languages".
https://doi.org/10.5281/zenodo.7374334

Received 2022-09-02; accepted 2022-11-07

108

https://doi.org/10.1109/ISCA52012.2021.00014
https://doi.org/10.1016/j.jpdc.2003.07.007
https://github.com/mpllang/parallel-ml-bench
https://github.com/mpllang/parallel-ml-bench
https://doi.org/10.1109/SBAC-PAD49847.2020.00034
https://doi.org/10.1109/SBAC-PAD49847.2020.00034
https://doi.org/10.1109/ROSS51935.2020.00007
https://doi.org/10.1109/ROSS51935.2020.00007
https://doi.org/10.1145/2312005.2312018
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://doi.org/10.1109/MM.2021.3055451
https://doi.org/10.1145/2451116.2451119
https://doi.org/10.1145/2451116.2451119
https://doi.org/10.1145/3547646
https://doi.org/10.5281/zenodo.7374334

	Abstract
	1 Introduction
	2 Background
	2.1 Disentanglement
	2.2 Cache Coherence
	2.3 Cache Coherence for Disciplined Programs

	3 WARD Property
	3.1 WARD Definition
	3.2 General WARD Example
	3.3 High-Level WARD Example

	4 WARD by Construction
	4.1 Disentanglement WARD
	4.2 Disentanglement by Construction in MPL
	4.3 Software Engineering Effort

	5 WARDen Cache Coherence Protocol
	5.1 The WARD Coherence State
	5.2 Reconciliation
	5.3 Addressing Drawbacks of Cache Coherence

	6 WARDen System
	6.1 Proposed Hardware Implementation
	6.2 Simulated Prototype

	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Modern Hardware
	7.3 Future Machines

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	References

