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Abstract—Functional, memory-managed parallel languages
(FMPLs) are a recent innovative approach to shared-memory
parallel programming. Despite their rising prevalence in other
areas, FMPLs have yet to gain traction in HPC. In this work, we
explore the utility of FMPLs for HPC by re-implementing the
NAS Parallel Benchmarks in an FMPL.

For this study, we ported the benchmarks into the Parallel
ML language. We discuss the advantages and disadvantages
of using Parallel ML for HPC applications based on our
development experience. We compare the performance of our
Parallel ML implementation to the existing C/OpenMP version.
The FMPL implementations are 1.02×-5.76× slower compared
to OpenMP. Our positive development experience combined with
some competitive performance results suggest that FMPLs have
the potential to become a viable choice for HPC applications. We
conclude by describing our future work to automatically manage
distributed memory within an FMPL, creating a compelling new
programming model for HPC.

I. INTRODUCTION

Functional Memory-managed parallel languages (FMPLs)
are, as the name implies, memory-managed, functional pro-
gramming languages that support nested parallelism. Example
FMPLs include NESL [9], parallel Haskell [17], and Parallel
ML [16], [29]. FMPLs make parallel programming easier by
automatically managing memory. In addition, their functional
semantics strictly control data mutation, helping users avoid
the painful race conditions that are notorious in parallel
programming [5]. FMPLs support parallelism through high-
level parallelism constructs (e.g., fork-join, parallel-for loops,
parallel recursion, and nested data parallelism). These con-
structs are already popularized in high performance computing
(HPC) by tools like OpenMP [13]. All together, FMPLs enable
high-level, “fearless” parallel programming.

FMPLs are growing in popularity in other communities, but
not HPC. In academia, FMPLs are actively being developed
and improved by programming language researchers [29],
[6]. The FMPL we utilize in this work, Parallel ML, is a
member of the ML language family, which has been integral
to programming language research for multiple decades [21].
Industry has also adopted these languages. The most prominent
example is the trading company Jane Street, who contribute
research and use FMPLs in production code [26], [27]. Lastly,
FMPLs are becoming part of the required cirricula of top
computer science programs. For example, Carnegie Mellon

University teaches algorithms to over 500 undergraduates per
year using Parallel ML.

On the other hand, the HPC community has so-far largely
ignored FMPLs. However, HPC developers have shown a
willingness to consider new parallel programming models
and languages both in the past (e.g., High Performance For-
tran [20], Coarray Fortran [22]) and present (e.g., SYCL,
Chapel [12], modern Fortan [23], etc.). Meanwhile, there is a
nascent trend in the HPC community pushing towards modern
high productivity languages such as Python [32] to avoid the
growing complexity of modern supercomputers.

On paper, FMPLs have the potential to be the best of both
worlds. Their functional semantics and strict data/memory
control enable powerful optimizations that aim to match the
performance of traditional, lower-level languages [29], [28],
[30]. Additionally, FMPLs, like other high-level languages,
allow expression of the parallelism available in the algorithm
without direct reference to underlying threads/hardware, in-
creasing productivity and portability. In general, as supercom-
puters become more complex, so too will the challenge of
programming them. FMPLs may be a natural fit to assist
developers with these emerging challenges.

In this paper, we set out to study the intersection between
HPC and FMPLs and better understand the benefits and
drawbacks of FMPLs for HPC applications. We implement
the most well-known and widely-studied benchmark suite for
HPC, the NAS Parallel Benchmarks (NPB), in a state-of-the-
art FMPL, Parallel ML. Specifically, we implement the five
kernels from NPB shown in Table I: EP, FT, CG, IS, and
MG. Current FMPLs are designed for shared-memory parallel
programming, so we compare our FMPL benchmarks with an
existing C+OpenMP NPB implementation [2], since OpenMP
is the predominant programming model for shared-memory
parallelism in HPC today. We describe our development ex-
perience and the major pros and cons we encountered.

We analyze the relative performance in detail, varying the
number of processors used, the input size, and the parallelism
granularity. We found that FMPLs implementations were
1.02×-5.76× slower than the OpenMP versions, depending
on the benchmark. A minimum slowdown of 1.02× (from
the EP benchmark) indicates that for massively parallel HPC
applications, FMPLs can be performance-competitive with
lower-level implementations. On the other hand, a worst-



case slowdown of 5.76× (from the MG benchmark) shows
the performance issues of FMPLs, particularly for applica-
tions with computationally-intense sequential sections. Over-
all, these performance numbers as a whole are a promising
sign for the future of FMPLs in HPC, as further research will
narrow the performance gap.

Another main outcome of this work are the FMPL NPB im-
plementations themselves, which we provide as open source.
These implementations serve as a reference for HPC develop-
ers curious what HPC applications look like when written in
an FMPL like Parallel ML. In addition, the FMPL research
community can utilize them for evaluating their future inno-
vations from an HPC perspective.

Our findings are promising for shared-memory parallelism,
but there is an obvious lack of support for distributed memory,
which is necessary for production HPC applications. We
conclude the paper by describing our future work, which
aims to add distributed memory parallelism to FMPLs without
altering the easy-to-use programming model.

We summarize our contributions as follows.
• An anatomy of the development experience for HPC
developers leveraging high-level parallel languages for
shared-memory multiprocessing;
• Performance analysis showing that FMPLs can be
competitive (as little as 1.02× slowdown) with C/OpenMP;
• Complete NPB implementations in Parallel ML for HPC
developers to reference and language developers to use for
performance evaluation from an HPC perspective.

II. BACKGROUND

Here we describe the applications we work with (the NAS
Parallel Benchmarks) and the FMPL we target (Parallel ML).

A. NAS Parallel Benchmarks

Benchmark History/Relevance: Stemming from NASA’s
Numerical Analysis Simulation (NAS) Program, the NAS
Parallel Benchmarks (NPB) were developed to test supercom-
puters. The NAS Parallel Benchmarks were designed to mimic
the core kernels of computational fluid dynamics programs.
They are formally described as algorithms, meaning any
implementation that properly executes the implementation-
independent steps is considered valid. This design enables
cross-language comparison; two implementations that both
adhere to the algorithm can be directly compared.

The original NPB 1.0 specification has been cited nearly
4000 times, demonstrating that NPB are a widely-used tool
for assessing HPC performance [7]. Since NPB 1.0’s release,
several versions have been developed. We specifically study
the five kernels shown in Table I from the third-party NPB
3.0 C+OpenMP implementation [4], [2].

Overall, the NAS Parallel Benchmarks and their implemen-
tations are a reliable tool to determine the effectiveness of
different HPC programming techniques. We therefore proceed
with NPB as our target applications for evaluation.

Benchmark Descriptions: Next, we describe each kernel,
their primary data structures, and opportunities for parallelism.

TABLE I: NPB kernels that we re-implement in this work

Abbreviation Descriptive Name
IS Integer Sort
EP Embarrassingly Parallel (Random Number Generation)
CG Conjugate Gradient
MG Multi-Grid Solver
FT 3-D Fast Fourier Transform

The Embarrassingly Parallel (EP) benchmark generates pairs
of Gaussian Deviates. The main data structure is a one-
dimensional array containing floating point values. EP’s main
parallelism comes from generating the pairs in parallel, with
a parallel reduction to collect results. As its name suggests,
nearly all of EP’s calculations are parallelizable, meaning it
has the most fine-grain parallelism in the suite.

The Fourier Transform (FT) benchmark solves a partial dif-
ferential equation using fast fourier transforms. FT works with
a three dimensional arrays which contain complex numbers.
FT’s parallelism comes from parallel loops used to iterate
over the working arrays. FT’s arrays are constant size, so the
benchmark exposes a large amount of parallelism.

The Conjugate Gradient (CG) benchmark utilizes the in-
verse power method to estimate the largest eigenvalue of a
sparse matrix. The main data structures are 1-D floating-point
arrays. The majority of CG’s parallelism comes from parallel
iteration over the arrays and parallel reductions.

The Integer Sort (IS) benchmark sorts a pseudo-random
set of integers. The main data structures are 1-D arrays of
integers. The primary parallelism opportunity is iterating over
the integer set in parallel during the sorting algorithm. IS
contains a decent amount of parallelism, but its execution
pattern is irregular, as the parallel sections are interrupted by
sequential, “master” thread-only sections.

The Multi-Grid (MG) benchmark performs several iterations
to approximate a solution to a Poisson problem on a 3-D
array. The main data structures are 3-D floating-point arrays
of various sizes. MG’s parallelism comes from parallel loops
which iterate through the dimensions and values of the arrays.
Due to its complex operations on large arrays, MG contains
the least/coarsest-grained parallelism in the benchmark suite.

B. Parallel ML

Next, we describe our target FMPL: Parallel ML. We dis-
cuss why we chose Parallel ML over other FMPLs and detail
how to write programs using its the unique characteristics.

Why Parallel ML: We initially considered 3 modern FM-
PLs: Data Parallel Haskell (DPH), Multicore OCaml (MOC),
and Parallel ML (PML). We eliminated DPH because it is a
pure-functional language, meaning that all data is immutable.
As described in Section II-A, the NPB kernels rely on arrays.
In a pure functional setting (no mutations), array manipulations
involve copies. This approach causes significant slowdowns
because updating an array field is not as simple as updating
(i.e., mutating) the proper memory location.

MOC and PML support mutable arrays and are considered
generally performant [26], [29], [6]. For this work, both
languages are acceptable choices. However, as we describe in
Section V, we plan to make significant changes to the language



runtime in our future work. We chose PML over MOC because
its design and underlying runtime are more research-focused,
whereas MOC’s underpinnings are unnecessarily complex for
our purposes. Note that both languages are ML derivatives,
meaning it is straightforward to translate our findings to MOC;
in this spirit, we refer to FMPLs generally when possible to
indicate our results are not language-specific.

We specifically employ an important dialect of Parallel
ML [29], [6]. Parallel ML is a memory-managed, functional
language with support for data mutation (i.e., side effects) and
nested parallelism. Parallelism in PML is exposed through
a variety of high level parallelism constructs. We compile
our programs with MPL, which is a parallel extension of the
MLton compiler [1] for the sequential Standard ML language.

Programming in Parallel ML: Here we describe Parallel
ML features that are unique compared to traditional HPC
languages like Fortran and C/++. Throughout this section, we
refer to line numbers from the example in Figure 1.

Immutability by Default: By default, nearly all data in Par-
allel ML is immutable. Immutable data are values that cannot
be changed/updated. In Parallel ML, we declare immutable
values as shown starting at line 1. Primitive types like int
and real (i.e., a double in C/C++) are immutable by default.
Simple tasks in other languages, such as incrementing an int,
cannot be performed in Parallel ML. Instead, the runtime will
store the result of the summation in a new location, even if
the programmer uses the same name.

On the other hand, mutable values can be updated. Starting
on line 9, we showcase the two forms of mutable data in
Parallel ML: refs and arrays. On line 22, we update the value
at the first index in an array. Note that the return value is
stored in “ ”, meaning the function does not have a useful
return value. Instead, the main result is the function’s “side-
effect”: updating the array value.

Functions: As the name ”functional language” suggests,
functions play an out-sized role in Parallel ML compared
to lower-level languages. Functions are treated as first-class
citizens alongside other types like int and real. In practice,
this idea means that functions can be stored in variables and
used as input arguments and return values. A simple function
that increments an array element is shown on line 28.

incrElem takes advantage of the common “let-in-end” struc-
ture. This structures enables scoped variables, meaning values
like new are only valid between “in” and “end”.

To fully understand the power of functions in Parallel ML,
consider the function shown on line 36. forLoop implements
a for-loop. By default, Parallel ML does not include an
implementation of a sequential for-loop. Instead, programmers
use recursion, as we show in our for-loop example.

The forLoop function takes another function, f, as an input
argument. The closest analogue to this behavior in C is passing
a void*. Because it includes another function, forLoop is
considered a “higher order function”. We proceed to use
forLoop to increment all of array1 on line 44.

Parallelism: To perform array increments in parallel, we
simply swap out our for-loop for the builtin parallel for-loop,

1 (*** Immutable Data Types ***)
2

3 (* int *)
4 val i = 4
5

6 (* real (double) *)
7 val a = 0.0
8

9 (*** Mutable Data Types ***)
10

11 (* ref (pointer) to int *)
12 val pointer = ref 0
13 val _ = pointer := 1 (* updated ref

*)
14 val contents = !pointer (*

dereferenced ref *)
15

16 (* 4-element array init to 0.0 *)
17 val array1 = Array.array(i, a)
18

19 (* Reading first element in array *)
20 val first = Array.sub(array1, 0)
21

22 (* Updating first element in array *)
23 val _ = Array.update(array1, 0, 1.0)
24

25

26 (*** Functions ***)
27

28 (* Basic func: increment array elem

*)
29 fun incrElem(array, index) =
30 let
31 val new = Array.sub(array, index)

+ 1
32 in
33 Array.update(array, index, new)
34 end
35

36 (* Higher order func: for-loop *)
37 fun forLoop((i, j), f : int -> unit)

=
38 if i >=j then ()
39 else (
40 f(i);
41 forLoop((i+1, j), f))
42

43 (* Using HOF: incrementing array *)
44 val len = Array.length(array1)
45 val _ = forLoop((0, len), fn i =>
46 incrElem(array1, i))
47

48 (* Parallelizing array increment *)
49 val G = 1
50 val _ = ForkJoin.parfor G (0, len) (

fn i => incrElem(array1, i))

Fig. 1: Basic Parallel ML examples



ForkJoin.parfor, as shown on line 49. ForkJoin.parfor dynam-
ically executes the loop in parallel using work stealing. It only
takes one additional parameter: grain size, for which we use
G. Grain size allows the user to easily control the granularity
of parallelism by changing the size of computational units
in the application. Grain size has a significant impact on
performance, which we show in Section IV.

Parallelization in FMPLs is simpler than OpenMP be-
cause of the dynamic parallelization and memory management
scheme performed by the language runtime. In FMPLs, there
is no user-level concept of threads. Instead, the runtime uses
work stealing to distribute parallel computation. During this
process, the runtime is responsible for managing memory
across the parallel threads. Therefore, important manual op-
timizations in OpenMP, such as declaring variables as thread-
private or shared, are automated by the FMPL runtime.

Parallel ML also recently added support for select high-level
parallel operations on data collections [28]. We describe how
we specifically utilize one of these operations in Section III-A.

III. DEVELOPMENT EXPERIENCE

In this section, we describe the main advantages and dis-
advantages of writing HPC programs in FMPLs based on our
experience porting the NPB Benchmarks to Parallel ML.

A. Pros

Functional Programming: The first and most apparent
feature of FMPLs is functional programming. The primary
advantage of this approach is high-level legibility and abstrac-
tion. Every expression within an FMPL is a function with
inputs and outputs, which means that the flow and purpose
of a new piece of code can be easily read and understood.
High-level functional languages also include rich semantics
for user-defined datatypes. For example, in FT, we created
custom datatypes and functions to elegantly manipulate 3-D
arrays of complex numbers.

Automatic Memory Management: Another major advan-
tage of high-level functional languages from our experience
is automatic memory management. All allocations and frees
are handled by the language runtime. Automatic memory
management is particularly attractive for HPC applications,
as HPC memory systems are becoming increasingly complex
(e.g., NUMA architectures, heterogeneous accelerators, etc).

High-Level Parallel Constructs: Parallel ML’s support for
nested parallelism includes simpler constructs such as parallel
for loops popularized by OpenMP and more complex parallel
data operations such as reduce, map, and filter [29], [28]. In
our NPB implementations, we used these operations to expose
the same parallelism opportunities as the C code.

The main advantage of these constructs in our eyes is
their obviation of critical manual optimizations in OpenMP
like shared vs. private variables, which can be difficult for
developers to implement in complex scenarios. We also had a
positive experience with some of the more complex constructs.
Particularly, we frequently used the data-parallel reduction to
efficiently parallelize regions of EP, CG, and MG.

Foreign Function Interface: Foreign Function Interface
(FFI) support was critical to our development process. The
FFI in PML allows full bidirectional interoperability, mean-
ing PML programs can directly call C functions and vice
versa. In our implementations, we used the FFI to port non-
performance-critical code (e.g., random number generation
and data initialization). The FFI allowed us to focus on the
other big advantages of using an FMPL while avoiding some
pitfalls (as we discuss in Section III-B). Additionally, we used
the FFI to port the benchmarks incrementally, maintaining
functionality while iteratively expanding the scope of the PML
section. We were able to routinely test our code instead of re-
writing the entire benchmark from scratch. We note that using
the FFI creates the opportunity for mixed language programs,
which introduces concerns about maintainability.

File I/O: File I/O is a prevalent and important component
of modern HPC applications, During an early iteration of our
benchmarks, we used File I/O to import input data generated
by the C benchmarks. We found that loading and parsing data
from many-gigabyte files into PML was surprisingly feasible.
The built-in file processing tools are fairly intuitive and robust,
and the functional paradigm allowed us to parse all the data in
a handful of lines of readable code. Overall, we found FMPLs
elegantly handle file I/O.

Memory Protection/Exceptions: A convenient feature of
FMPLs is their robust memory protection scheme. NPB, like
most HPC applications, involves complex iterations over large
memory regions. When developing these applications, it is
easy to make mistakes. In C, errors like out-of-bounds array
accesses may go completely undiagnosed at runtime, where
they may induce strange behavior or segmentation faults.

Parallel ML solves this issue by protecting data structures
and creating detailed exceptions. For example, an out-of-
bounds array access halts the program and produces an ”Array:
Subscript” error. These exceptions point developers to their
mistakes, which greatly improved our debugging experience.

While memory protection is beneficial during the devel-
opment process, it comes at a performance cost. During
execution, the language runtime must perform a bounds check
for every array access. This extra step can greatly impact
performance, which we we later see in our experiments.

B. Cons

Functional Programming: While the functional program-
ming paradigm is useful for HPC applications in many
ways, it can be unintuitive for programmers, particularly
HPC developers who have years of experience with low-
level, imperative programming. Given our HPC background,
we also experienced this learning curve. In this vein, certain
familiar concepts are more difficult to use. For example,
if statements are treated as functional expressions, meaning
they must resolve to a single value (e.g., the return value
of a function call). To illustrate the complexity induced by
functional if statements, consider the if statement in each
version of the MG Benchmark shown in Figure 2. Using
this if statement, the program decides between two sets of



1 (*** C Version of MG Benchmark ***)
2 if (Class == ‘A’ || Class == ‘S’ ||

Class ==‘W’) {
3 c[0] = -3.0/8.0;
4 c[1] = 1.0/32.0; ...}
5 else {
6 c[0] = -3.0/17.0;
7 c[1] = 1.0/33.0; ...}
8

9 (*** PML Version of MG Benchmark ***)
10 fun smallClass(class: string) =
11 class = "A" orelse class = "S"

orelse class = "W";
12 if smallClass(CLASS) then
13 let
14 val _ = Array.update(c, 0,

˜3.0/8.0)
15 val _ = Array.update(c, 1,

1.0/32.0) ...
16 in() end
17 else
18 let
19 val _ = Array.update(c, 0,

˜3.0/17.0)
20 val _ = Array.update(c, 1,

1.0/33.0) ...
21 in() end;

Fig. 2: Porting an if statement from C to PML in the MG benchmark.
PML’s functional semantics result in more verbose if statements.

initial conditions according to class size. Each portion of the if
statement performs array updates. Bringing this behavior into
PML, we cannot write an if statement that directly performs
the array updates because each update has its own (null) return
value. Instead, we must use a “let-in-end” structure to assign
the return value of each operation to a dummy value, then
perform an empty function call for the if statement’s return
value. Behavior like this example is an obvious headache for
HPC developers more familiar with imperative languages.

Another issue caused by the functional paradigm is ver-
bosity. For example, C has special syntax to elegantly index
arrays, Parallel ML uses function calls.

High-Level Parallel Constructs: While Parallel ML’s par-
allel constructs simplified some programming tasks, the high-
level abstractions made some complex parallel control flows
difficult to implement. We ran into this challenge with IS.

The C implementation of the IS benchmark is essentially
one large parallel section operating on a few thread-private
arrays. Figure 3 shows an example parallel computation from
our eventual implementation of IS in PML. In C, thread private
copies prevent a race condition when prev buf ’s elements are
incremented at various locations according to key buff2.

In PML, no notion of threads is exposed to the programmer,
so no version of thread-private copies can be declared. To
circumvent this issue, we implemented the kernel using a

1 fun for() =
2 let val l = lock_init()
3 in ForkJoin.parfor G (0, n) (fn i =>
4 let
5 val ind = Array.sub(key_buff2, i)
6 val cur = Array.sub(prv_buff1,

ind)
7 in(
8 lock(l);
9 Array.update(prv_buff1, ind, cur

+1);
10 unlock(l))
11 end)
12 end

Fig. 3: A parallel kernel from IS. In the C implementation, prv buff1
is thread-private. In PML, thread-private values persist across itera-
tions, so we must use data locks for a single shared array.

single shared array. To prevent race conditions on the shared
array, we had to use manually developed concurrency control.
Currently, PML only provides basic atomic operations for
concurrency control, so we had to create our own lock type
and lock/unlock methods. Developing our own locks was
ultimately straightforward, but we consider this task to be far
lower-level than the promised programming model of FMPLs.

Compilation Time: Another pain point with FMPLs is the
compilation time. NPB are small applications (<1000 lines of
code), meaning the C implementations compile in the blink of
an eye with any commonplace compiler (GCC, Clang, etc.).
PML benchmarks, on the other hand, take more than a minute
to compile smaller files. This issue is a known challenge
for MPL and MLton, which perform full-program analyses
that quickly grow in complexity relative to the program size.
These full-program analyses greatly decrease the execution
time for the compiled binaries, so they are very important
to the compilation process.

During the debugging process, compile time became a
significant overhead as we repeatedly tweaked, re-compiled,
and tested the applications. For larger-scale HPC applications,
compile time when using FMPLs will also scale, becoming an
even bigger headache.

Floating-Point Correctness: During the development pro-
cess, we encountered issues generating precise floating point
values. Initially, we implemented a replica of the C random
number generator, which is used to create pseudorandom input
values for multiple benchmarks. We found that the FMPL
version of the function produced slightly erroneous values.
For example, the C implementation would produce a value of
.8081127688877 while PML would generate .8081127688880
for the exact same input. These discrepancies caused our
otherwise-correct FMPL implementations to produce invalid
outputs. In the end, we avoided this issue by using the FFI to
directly call the C random number generator.

We believe the root cause is that the C implementation
applies low-level syntax in a way that we cannot directly



translate to FMPLs. Specifically, the C version casts 64-
bit double precision values directly to 32-bit integers, which
incurs rounding. x86 platforms provide multiple rounding
modes that can be set using rounding control bits. We suspect
the C and PML implementations are using different rounding
modes, leading to different results. Low-level computational
minutiae translates poorly to FMPLs, so HPC developers must
pay special attention to maintain correctness in their programs.
It is important to note that beyond random number generation,
we encountered no other issues with floating point correctness.

Debugging Support: Even more so than lower-level par-
allel languages, there is a lack of source-level debugging
tools for FMPLs. Given their cutting-edge nature, none of the
FMPLs we considered for this work have debuggers.

Instead, we embedded source-level debug information into
our benchmarks through print statements, which we toggle on
and off as needed. This approach to debugging is very similar
to the one used by the C implementation, and this issue is a
symptom of the much broader need for debugging support for
parallel programmers.

C. Overall Thoughts

Overall, we found that FMPLs’ advantages grew to out-
weigh their disadvantages, especially with respect to their pro-
grammability. Although functional semantics are sometimes
verbose compared to lower-level syntax, they quickly become
familiar due to the strict and consistent rule set. Once we
overcame the initial hurdles, we were able to use higher-order
functions to quickly scale our implementations once we laid
the groundwork for each benchmark. Additionally, by using
the FFI, we could complete our implementations incrementally
and more quickly find the source of bugs.

Perhaps the most interesting way to highlight FMPL’s
advantages from our experience is what we did not have to
do. Thanks to the language abstractions, we did not have to
concern ourselves with threads or memory management, which
made for a straightforward programming experience.

The performance trade-off for these features is significant,
as we detail in the next section, but we believe these issues can
be addressed through continued improvement to these nascent
languages.

IV. EVALUATION

A. Experimental Methodology

For our experiments, we utilized a single-node, four socket
machine with Intel Xeon Gold 6238L CPUs with 384GB of
DDR4 memory. Each processor contains 22 physical cores,
each with 2 hyperthreads, resulting in 176 logical cores. We
collected each measurement 5 times. Overall, we saw minimal
run-to-run performance variation.

To compile the C+OpenMP NPB implementations, we used
GCC version 9.4.0 with O3 and mavx512 optimization flags.
Unfortunately, MPL only supports MLton’s source-to-source
compilation to C. We therefore compiled our Parallel ML to
C and then to binaries using MPL and GCC with the exact
same flags as the C version. However, we believe full-program

compilation to LLVM IR is a better approach for generating
performant applications in the future and further improve
performance. When compiling to C, MPL already generates
pseudo-SSA code in chunks that look like LLVM basic blocks.
Switching to LLVM would allow MPL to provide guarantees
like SSA, and more easily communicate other properties that
fall out of the MPL language by construction, directly to the
rest of the compiler toolchain, enabling stronger optimizations
like better alias analysis.

In Figure 4, we present graphs for each NPB kernel showing
how performance changes over the three configurable perfor-
mance factors: input size (i.e., class or class size), thread count,
and grain size. For each benchmark (IS, EP, CG, MG, and FT),
we performed a sweep over the three factors and measured
execution time for both the PML and C implementations.

Each graph varies one parameter along the x-axis, while
showing the relative performance difference between PML and
C on the y-axis. We represent the performance difference as
the relative slowdown of PML compared to C (i.e., how many
times slower the PML implementation is when compared to
C). We consider input sizes between S-C, thread counts up
to 176, and grain sizes up to 64 or 20000 if the benchmark
performance improved with greater grain sizes. Regarding
grain size, we vary the grain size in PML, but we leave the
equivalent OpenMP parameter (chunk size) as its default value
because the C implementation of NPB does not vary chunk
size. When manipulating other variables, we select the best-
performing number of threads/grain size and class size B.

B. Analysis

Next, we analyze the results from each benchmark, scan-
ning Figure 4 top-to-bottom and left-to-right. The figures are
ordered by relative performance, best to worst. In general,
we found a correlation between the amount of parallelism
available in the benchmark and the performance of the PML
implementation.

EP: We begin with EP, which is the best-performing
benchmark in PML. Across input sizes, thread counts, and
grain sizes, we measured relative slowdowns at most 25-30%
more than the C implementation. Typically, the performance
difference is negligible, and the PML version is actually faster
for small input sizes.

EP, as indicated by its full name ”Embarrassingly Parallel”,
contains the most parallelism of any benchmark. The results
we present here show that PML can reach performance parity
with C code when supplied with significant amounts of fine-
grained parallelism.

FT: Next is FT, where the PML implementation maintains
relative slowdowns less than 2×. FT’s many array operations
expose plenty of parallelism opportunities, but they are less
frequent than in EP because only the outermost loop of three
when mutating the 3-D arrays can be parallelized.

CG: Third is CG, with relative slowdowns between 2-3×
for large input sizes. This benchmark contains many fine-
grained parallelism opportunities, but they are broken into
several sections, with parallel reductions interspersed among
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Fig. 4: Relative slowdowns for PML vs. C implementations for varying input sizes, numbers of threads, and grain sizes. To choose the fixed
parameters for each graph, we selected the largest class size that we fully evaluated (B) and the best-performing number of threads/grain
size. These decisions are made per-benchmark, so the graphs for different benchmarks will feature different grain sizes and thread counts.
Details regarding the problem sizes and their associated parameter values can be found online [3].



some parallel loops. The fine-granularity is highlighted by the
varying grain size plot (brown line), where for the first time,
the PML benchmark performs better with larger grain sizes.
PML CG’s performance is likely held back by the frequent
switches between parallel calls. The program must finish each
section before moving on to the next, causing a bottleneck
where the workstealing queues empty as the last few parallel
iterations of a call complete.

IS: Second-to-last is IS, which generally hovers between
3.5×-4× slower than the C implementation. IS again con-
tains bountiful parallelism opportunities, but as highlighted in
Section III-B, it has a complex parallel workflow. In IS, the
parallel sections are separated by sequential critical sections
only executed by the “master” thread. These sequential sec-
tions have a similar effect to the smaller parallel sections in
CG, slowing down the PML implementation.

MG: Last is MG, the worst performing PML benchmark.
PML MG tends to be 4-8× slower than the same C config-
uration, with far more variance than the other benchmarks.
MG’s poor performance is due to the operations requiring
multiple array accesses (e.g., stencil-like calculations) in its
parallel region. Frequently, new array values are calculated
using four or more older values from multiple arrays. Each
of these individual array accesses incur a performance penalty
compared to C to support higher-level language features, (e.g.,
bounds checks to enable protection from Section III-A). These
slow calculations decrease the parallelism of the benchmark,
because like FT, only the outermost loop is parallelizable. As
such, PML MG struggles to keep up with C.

General Trends: Performance-wise, using an FMPL to
develop HPC applications can incur a significant performance
loss. However, the magnitude of this slowdown shifted dras-
tically from one application to another depending the amount
and structure of parallelism in each benchmark.

In Figure 5, we selected the best-performing thread count
and grain sizes for the PML and C implementations of each
benchmark for class B. We show these values in Table II.
Figure 5 shows a massive difference in relative slowdown be-
tween the best-performing PML implementation (EP=1.02×)
and the worst (MG=5.76×). The average relative slowdown
across all benchmarks is 2.96×.

FMPLs’ Suitability for HPC: In their current state, FMPLs
are not truly useful to existing HPC developers for a few
reasons. Performance is an obvious concern, but moving to
LLVM IR instead of source-to-source compilation which could
significantly improve PML’s performance. Similarly, existing
HPC libraries could be utilized in FMPLs either through FFI
or a thin wrapper library that interfaces with the existing code
at the compiler level.

More fundamentally, FMPLs lack a groundbreaking feature
to out-compete existing shared memory programming mod-
els. Interfaces like OpenMP already provide a programmer-
friendly, directive-based approach to shared memory par-
allelism. Seasoned HPC developers who are familiar with
OpenMP or an equivalent are unlikely to see benefit from
switching to an FMPL.
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Fig. 5: Relative slowdown for each benchmark where both the C and
PML implementations use their most performant parameters (e.g.,
thread count) for Class Size B. The average across all benchmarks
is 2.96×.

TABLE II: Optimal thread count and grain size for Class=B

Benchmark Language Thread Count Grain Size
EP C 176 N/A (Default)
EP PML 176 1
FT C 128 N/A (Default)
FT PML 128 1
CG C 128 N/A (Default)
CG PML 128 256
IS C 16 N/A (Default)
IS PML 16 10000

MG C 128 N/A (Default)
MG PML 128 1

That said, the future of FMPLs in HPC is not all doom and
gloom. For example, FMPLs could help attract more users to
HPC. Data science and deep learning are currently hot topics
in HPC. In these fields, developers use high-level languages
like Python. Efforts are already underway to provide HPC-
enabled programming models better suited for these commu-
nities [32], [8]. FMPLs could provide a familiar programming
model and substantially better parallel performance for these
applications.

Lastly, it is important to note that these languages are still
nascent and under active research, which may create new
features that appeal to HPC. In the next section, we detail
our planned effort to revolutionize the Parallel ML runtime
for HPC by adding automatic distributed memory parallelism.

V. FUTURE WORK

To expand FMPL’s potential for developing HPC applica-
tions, we seek to apply them to distributed memory systems
without complicating the existing programming model.

A. Background

The MPL compiler’s runtime for Parallel ML manages
memory in a strict manner that makes it especially suitable for

merge heaps 
into parent

fresh empty heaps

fork join

Fig. 6: Heap hierarchy at forks and joins. Black circles are active
child threads, and white circles are suspended parent threads. Gray
rectangles represent heaps [29].
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high-performance, distributed computation. Specifically, MPL
enforces the “disentanglement” memory property [29]. From a
systems perspective, disentanglement ensures that concurrent
threads remain oblivious to each other’s allocations.

MPL automatically ensures disentanglement by enforcing a
strict memory heap hierarchy. When a thread forks and creates
parallel child threads (e.g., to begin executing a parallel-
for loop), each child thread allocates a new, separate heap
of memory. Child threads can access their parent’s heap,
which they can use freely for communication. Because parent
threads are suspended while their children execute, they are not
concurrent threads, and accesses to the parent heap by the child
threads do not violate disentanglement. On the other hand,
child threads remain unaware of each other’s personal heaps.
This policy ensures that no child threads can access their
sibling’s heap concurrently, maintaining disentanglement. The
heap management surrounding forks and joins is illustrated in
Figure 6, which we borrow from Westrick et al. [29].

B. Distributed FMPL Execution

Next, we describe our plan to automatically execute disen-
tangled FMPL programs across distributed memory in HPC
systems. Disentangled parallel programs create a specific exe-
cution model with two distinct types of memory accesses and
four forms of communications overall. An example execution
is shown in Figure 7. In this example, assuming each thread
is now a process distributed across separate memory domains,
we see the four forms of inter-process communication we must
support for distributed memory:

• Forks (navy): When a process forks, it must spawn new
“child” processes and tell them what computation to
complete.

• Joins (pink): When all of the child processes complete
their computation, they must communicate their results
(i.e., return values, relevant portions of their local heap)
to the “parent” and exit.

• Local Heap Access (brown): During computation, any
process may access the local heap that they allocated.

• Remote Heap Access (tan): During computation, a child
process may access a remote ancestor heap.

We observe that each type can be mapped onto existing
patterns in lower-level HPC communication libraries:

• Forks (navy): Forks can be performed by distributing
work to parallel processes using bulk-synchronous col-
lective communication (e.g., broadcast the function to run
and scatter the input values).

• Joins (pink): Joins can also be performed using bulk-
synchronous collective communication (e.g., gather or
reduce the results).

• Local Heap Access (brown): Local accesses can occur
without any communication.

• Remote Heap Access (tan): Remote accesses can occur
through one-sided, atomic operations. By only allowing
ordered accesses on a single copy of the memory location,
we effectively maintain the processor consistency model
expected by fork/join programs.

Using these ideas, we are in the initial stage of re-
implementing the MPL runtime using conventional HPC pro-
gramming models, in our case, MPI.

A distributed Parallel ML language could be massively
beneficial to HPC developers. The new runtime will make it
possible to run FMPL programs on distributed HPC systems
without modification. The language runtime will utilize both
the existing shared-memory back-end and the new distributed
back-end to automatically load-balance applications.

Considering these major benefits, we hope distributed FM-
PLs will be compelling new direction for HPC programming
model research. We plan to study this system thoroughly
and seek novel ways to minimize the performance penalty of
distributed FMPLs.

VI. RELATED WORK

Parallel ML is one of many recently-developed FMPLs.
From the ML family of languages alone, other relatively-new
FMPLs include Multicore OCaml [26], [27] and the Manticore
project [15], which has its own dialect of Parallel ML.

Multicore OCaml is an industry-led, shared-memory parallel
version of OCaml. In this work, we chose Parallel ML using
the MPL compiler because of our future work, which will
benefit from MPL’s research-oriented design. A natural future
step is bringing any MPL enhancements to Multicore OCaml.

The Manticore project defines its own dialect of Parallel
ML, which includes implicitly threaded data structures such
as parallel arrays. We focus on MPL’s PML over Manticore
because MPL’s high-level parallelism constructs are more sim-
ilar to parallelism APIs currently used in HPC (e.g., OpenMP).

Beyond the ML family, another recent FMPL is Distributed
Parallel Haskell [11]. DPH focuses on pure functional pro-
gramming, which is far less suitable for our purposes because
it not does not support mutable arrays.

The modern FMPLs are heavily inspired by older parallel
functional languages such as NESL [9]. NESL is an ML-like
language, and it was one of the original functional languages
to support nested data parallelism and automatic vectorization.

There is a long trail of new HPC parallel programming lan-
guages/models designed to maximize performance and/or im-



prove developer productivity. Highlights include UPC/++ [10],
[31], Coarray Fortran [22] and High Performance Fortran
(HPF) [20]. UPC integrated the partitioned global address
programming model into C and later C++. Coarray Fortran
extended F95 with SPMD coarrays, which were later adopted
into Fortran 2008. HPF extended F90 with innovative fea-
tures like parallelism directives, but it largely fizzled [19].
Languages such as Chapel [12] attempt to improve on HPF’s
failings. Other efforts have targeted non-CPU/heterogeneous
programming, such as CUDA and SYCL [24], which has been
adopted by Intel’s ”OneAPI” for future HPC programs.

The NAS Parallel Benchmarks have frequently been used to
evaluate the effectiveness of emerging languages for HPC ap-
plications. Examples include UPC [14], [18] and Chapel [12].
In addition, NPB is commonly used to compare different HPC
programming models [25].

VII. CONCLUSION

In this work, we use an FMPL to implement the NAS
parallel benchmarks for shared-memory systems, and we study
FMPL’s larger potential for HPC. Based on that experience, we
believe FMPLs have the potential to make HPC programming
easier. Emerging domains with smaller existing code footprints
may soon benefit from FMPLs, and we are excited to see
how future improvements to FMPLs further increase their
usefulness for HPC applications. We plan to contribute by
bringing MPL to distributed memory.

Lastly, it is important to note that our implementations are
a careful but first attempt bring to NPB into an FMPL. We
believe these are useful to both the HPC and parallel languages
communities. We don’t claim our implementations are optimal,
and we plan to improve them.
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